ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 203-223

Processing method of satellite altimetry data for the White, Barents and Kara Seas

S.A. Lebedev 1, 2 
1 Geophysical Center RAS, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 30.11.2016
DOI: 10.21046/2070-7401-2016-13-6-203-223
The article focuses on the development of satellite altimetry data processing techniques for the level regime study of the White, Barents and Kara Seas of the Arctic shelf of the Russian Federation. For the study of the Russian Arctic shelf the best choice is the choice of satellite altimetry data of ERS-1, ERS-2, Envisat and SARAL/Altika, and for the White Sea – TOPEX/Poseidon, Jason-1, Jason-2 and Jason-3. It is shown that the systematic error altimetry for the waters of the White, Barents and Kara Seas measurements between satellites ERS-2 and ERS-1 was in average 1,37±0,94 cm and for Envisat and ERS-2 satellites − 1.78±0.65 cm. For the White Sea bias between altimetry satellites TOPEX/Poseidon and Jason-1 was 2,61±0,27 cm and for satellites Jason-1 and Jason-2 − -1,83 ± 0,34 cm. Comparison of different tidal patterns showed that the most optimal for the processing of satellite altimetry data is the regional tidal model with the maximum spatial resolution, for example, the model LAMI and AOTIM-5.
Keywords: satellite altimetry, systematic error, global tide models, regional tide models, White Sea, Barents Sea, Kara Sea
Full text

References:

  1. Beloe more i ego vodosbor pod vliyaniem klimaticheskikh i antropogennykh faktorov (The White Sea and their Watershed under Influenses of Climate and Antropogenic Impact), N.N. Filatov, A.Yu. Terzhevik Petrozavodsk: Karel'skii nauchnyi tsentr RAN, 2007, 349 p.
  2. Voda Rossii. Vodno-resursnyi potentsial (Water of Russia, Water-resource potential), A.M. Chernyaeva (Eds.), Ekaterinburg: Izdatel'stvo “AKVA-PRESS”, 2000, 420 p.
  3. Gidrometeorologiya i gidrokhimiya morei SSSR, Vol. 1, Barentsevo more, No. 1, Gidrometeorologicheskie usloviya (Hydrometeorology and Hydrochemistry of the Seas of the USSR, Vol. 1, The Barents Sea, No. 1, Hydrometeorological conditions), F.S. Terzieva, T.V. Girdyuka, G.G. Zykovoi, L. Dzhenyuka (Eds.), Leningrad: Gidrometeoizdat, 1990, 271 p.
  4. Gidrometeorologiya i gidrokhimiya morei SSSR, Vol. 2, Beloe more, No. 1, Gidrometeorologicheskie usloviya (Hydrometeorology and Hydrochemistry of the Seas of the USSR, Vol. 2, White Sea, No. 1, Hydrometeorological conditions), B.Kh. Glukhovskogo (Ed.), Leningrad: Gidrometeoizdat, 1991, 240 p.
  5. Dobrovol'skii A.D., Zalogin B.S., Morya SSSR (Seas of USSR), Moscow: Izd-vo MGU, 1982, 192 p.
  6. Ionov V.V., Mai R.I., Smagin R.E., Chislennaya gidrodinamicheskaya model' prilivnykh yavlenii v gube Keret' (Kandalakshskii zaliv, Beloe more) (Numeric hydrodynamic model of tidal phenomena in the Keret Bay (Kandalaksha Bay, White Sea)), Izvestiya Russkogo geograficheskogo obshchestva, 2015, Vol. 147, No. 2, pp. 22–37.
  7. Kagan B.A., Romanenkov D.A., Effect of the nonlinear interaction of tidal harmonics on their spatial structure as applied to the system of the white and Barents Seas, Izvestiya. Atmospheric and Oceanic Physics, 2007, Vol. 43, No. 5, pp. 655–662. DOI: 10.1134/S0001433807050131.
  8. Lebedev S.A., Kostyanoy A.G., Sputnikovaya al'timetriya Kaspiiskogo moray (Satellite altimetry of the Caspian Sea), M.: Izd. tsentr “MORE” Mezhdunarodnogo instituta okeana, 2005, 366 p.
  9. Lebedev S.A., Sirota A.M., Medvedev D.P., Khlebnikova S.N., Kostyanoy A.G., Ginzburg A.I., Sheremet N.A., Kuz'mina E.V., Verifikatsiya dannykh sputnikovoi al'timetrii v pribrezhnoi zone evropeiskikh morei (Verification of satellite altimetry data in the coastal zone of the European Seas), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 2, pp. 137–140.
  10. May R.I., Lineinye i nelineinye prilivnye yavleniya v moryakh Evropeistkoi Arktiki (Linear and nonlinear tidal phenomena in the seas of the Arctic Evropeystkoy), Problemy Arktiki i Antarktiki, 2008, No. 3 (80), pp. 115–125.
  11. May R.I., Otsenka vklada razlichnykh nelineinykh effektov v formirovanie ostatochnykh prilivnykh yavlenii Belogo moray (Evaluation of the contribution of various non-linear effects in the formation of residual tidal phenomena White Sea), Tr. GOIN, 2004, Vol. 210, pp. 126–136.
  12. May R.I., Fuks V.R., Ostatochnye prilivnye yavleniya v Belom more (Residual tidal phenomena in the White Sea), Proc. 9th Int. Conference “Problemy izucheniya, ratsional'nogo ispol'zovaniya i okhrany resursov Belogo moray”, 11–14 October 2004, Petrozavodsk, Kareliya, Russia, Petrozavodsk, 2005, pp. 202–207.
  13. Mastepanov A.M., Osvoenie uglevodorodnykh resursov Arktiki: nado li toropit'sya? (Development of hydrocarbon resources in the Arctic Region: is it so necessary to hurry?), Problemy ekonomiki i upravleniya neftegazovym kompleksom, 2014, No. 3, pp. 4–14.
  14. Mikhailov V.N., Ust'ya rek Rossii i sopredel'nykh stran: proshloe, nastoyashchee i budushchee (The mouth of the rivers of Russia and neighboring countries: the past, present and future), Moscow: GEOS, 1997, 412 p.
  15. Popov S.K., Lobov A.L., Elisov V.V., Batov V.I., A tide in the operational model for short-range forecast of current velocity and sea level in the Barents and White seas, Russian Meteorology and Hydrology, 2013, Vol. 38, No. 6, pp. 414–425. DOI: 10.3103/S106837391306006X.
  16. Sgibneva L.A., Izmenchivost' garmonicheskikh postoyannykh priliva kak sledstvie nelineinykh effektov (Variability harmonic constant tide as a result of non-linear effects), Trudy GOIN, 1981, Vol. 156, pp. 33–40.
  17. Sistema Belogo morya. Tom I. Prirodnaya sreda vodosbora Belogo morya (White Sea System, Vol. I, The natural environment of the catchment area of the White Sea), A.P. Lisitsyn, I.A. Nemirovskaya, V.P. Shevchenko (Eds.), Moscow: Nauchnyi mir, 2010, 480 p.
  18. Chuprov V.C., Uglevodorodnyi potentsial Pechorsko-Barentsevomorskogo basseina (Hydrocarbon potential of the Barents-Pechora Basin), Vestnik instituta geologii Komi nauchnogo tsentra Ural'skogo otdeleniya RAN, 2008, No. 11, pp. 7–12.
  19. Andersen O., Knudsen P., Stenseng L., The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry, International Association of Geodesy Symposia, Berlin Heidelberg: Springer, 2015. DOI: 10.1007/1345_2015_182.
  20. Benada J.R., PODAAC Merged GDR (TOPEX/Poseidon) Generation V User's Handbook, JPL D–11007, Version 2.0, Pasadena: JPL, 1997, 131 p.
  21. Bronner E., Guillot A., Picot N., SARAL/AltiKa Products Handbook, SALP-MU-M-OP-15984-CN, Issue 2, Rev. 5, 2016, 86 pp.
  22. Dumont J.P., Rosmorduc V., Carrere L., Picot N., Bronner E., Couhern A., Guillot A., Desai S., Bonekamp H., Figa J., Scharroo R., Lilibridge J., Jason-3 Product Handbook, SALP-MU-M-OP-16118-CN, Edition 1.2, 2016, 70 p.
  23. Dumont J.P., Rosmorduc V., Picot N., Desai S., Bonekamp H., Figa J., Lillibridge J., Scharroo R., OSTM/Jason–2 Products Handbook, CNES: SALP-MU-M-OP-15815-CN, EUMETSAT: EUM/OPS-JAS/MAN/08/0041, JPL: OSTM-29-1237, NOAA/NESDIS: Polar Series/OSTM J400, Issue 1., Rev. 8, CNES, EUMETSAT, JPL, 2011, 72 p.
  24. Eanes R.J., Bettadpur S.V., Ocean tides from two years of TOPEX/POSEIDON altimetry, EOS Trans. AGU, 1994, Vol. 75, No. 44, pp. 61.
  25. Egbert G.D., Erofeeva S.Y., Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 2002, Vol. 19, No. 2, pp. 183−204. DOI: 10.1175/1520-0426(2002)019 <0183:EIMOBO>2.0.CO;2.
  26. Egbert G.D., Tidal data inversion: Interpolation and Inference, Progress in Oceanography, 1997, Vol. 40, No. 1–4, pp. 53–80. DOI: 10.1016/S0079-6611(97)00023-2.
  27. Envisat RA2/MWR Product Handbook, ESA, 2007, 204 p.
  28. Gilbert L., Baker S., Dolding C., Vernier A., Brockley D., Martinez B., Gaudelli J., Baker S., Féménias P., ERS Altimetry Reprocessed Products, REA-UG-PHB-7003, Issue 3.1, 2014, 80 p.
  29. Jakobsson M., Grantz A., Kristofferse, Y., Macnab M., MacDonald R.W., Sakshaug E., Stein R., Jokat W., The Arctic Ocean: Boundary Conditions and Background Information, The Organic Carbon Cycle in the Arctic Ocean, R. Stein, R.W. Macdonald (Eds.), Berlin: Springer, 2004, pp. 1–32. DOI: 10.1007/978-3-642-18912-8_1.
  30. Kowalik Z., Proshutinsky A.Y., The Arctic Ocean Tides, The Polar Oceans and Their Role in Shaping the Global Environment, O.M. Johannessen, R.D. Muench, J.E. Overland (Eds.), Geophysical Monograph No. 85, Washington: AGU, 1994, pp. 137–158. DOI: 10.1029/GM085p0137.
  31. Lebedev S.A., Kostianoy A.G., Ginzburg A.I., Medvedev D.P., Sheremet N.A., Shauro S.N., Satellite Altimetry Applications in the Barents and White Seas, Coastal Altimetry, S. Vignudelli, A.G. Kostianoy, P. Cipollini, J. Benveniste (Eds.), Berlin, Springer-Verlag, 2011, pp. 389–416. DOI: 10.1007/978-3-642-12796-0_15.
  32. Marchenko N., Russian Arctic Seas: navigational conditions and accidents, Springer Science & Business Media, 2012, 293 p. DOI: 10.1007/978-3-642-22125-5.
  33. May R.I., Simulation of climate significant nonlinear tidal phenomena in the Euro Arctic seas, IEEE OCEANS'05 EUROPE Conference proceedings Oceanography, Modeling & Data, Processing Brest, France, 2005, Vol. 1, pp. 401–406. DOI: 10.1109/OCEANSE.2005.1511748.
  34. McCarthy D.D., Petit G., IERS Technical Note 32, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2004, 127 p.
  35. Padman L., Erofeeva S., A barotropic inverse tidal model for the Arctic Ocean, Geophys. Res. Letters, 2004, Vol. 31, No. 2. DOI: 10.1029/2003GL019003.
  36. Petit G., Luzum B., IERS conventions (2010), IERS Technical Note 32, Frankfurt am Main: Verlag des Bundesamts fur Kartographie und Geodasie, 2010, 179 p.
  37. Picot N., Case K., Desai S., Vincent P., AVISO and PODAAC User Handbook. IGDR and GDR Jason Products, SMM-MU-M5-OP-13184-CN (AVISO), JPL D–21352 (PODAAC), Edition 4.1, AVISO, PODAAC, 2008, 130 p.
  38. Rachold V., Eicken H., Gordeev V.V., Grigoriev, M.N. Hubberten H.-W., Lisitzin A.P., Shevchenko V.P., Schirrmeister L., Modern Terrigenous Organic Carbon Input to the Arctic Ocean, The Organic Carbon Cycle in the Arctic Ocean, R. Stein, R.W. Macdonald (Eds.), Berlin: Springer, 2004, pp. 33–55. DOI: 10.1007/978-3-642-18912-8_2.
  39. Ray R.D., A Global Ocean Tide Model from TOPEX/Poseidon Altimetry: GOT99.2, NASA Technical Mem, NASA/TM-1999-209478, Greenbelt: NASA GSFC, 1999, 58 p.
  40. Scharroo R., Smith W.H.F., A GPS-based climatology for the total electron content in the ionosphere, J. Geophys. Res., 2010, Vol. 115, No. A10. DOI: 10.1029/2009JA0014719.
  41. Stammer D., Ray R.D., Andersen O.B., Arbic B.K., Bosch W., Carrère L., Cheng Y., Chinn D.S., Dushaw B.D., Egbert G.D., Erofeeva S.Y., Fok H.S., Green J.A.M., Griffiths S., King M.A., Lapin V., Lemoine F.G., Luthcke S.B., Lyard F., Morison J., Müller M., Padman L., Richman J.G., Shriver J.F., Shum C.K., Taguchi E., Yi Y., Accuracy assessment of global barotropic ocean tide models, Reviews of Geophysics, 2014, Vol. 52, No. 3, pp. 243–282. DOI: 10.1002/ 2014RG000450.
  42. Tran N., Vandemark D., Chapron B., Labroue S., Feng H., Beckley B., Vincent P., New models for satellite altimeter sea state bias correction developed using global wave model data, J. Geophys. Res., 2006, Vol. 111, No. C9, C09009. DOI: 10.1029/2005JC003406.
  43. Uppala S.M., Kallberg P.W., Simmons A.J., Andrae U., Da Costa Bechtold V., Fiorino M., Gibson J.K., Haseler J., Hernandez A., Kelly G.A., Li X., Onogi K., Saarinen S., Sokka N., Allan R.P., Andersson E., Arpe K., Balmaseda M.A., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Caires S., Chevallier F., Dethof A., Dragosavac M., Fisher M., Fuentes M., Hagemann S., Holm E., Hoskins B.J., Isaksen L., Janssen P.A.E.M., Jenne R., Mcnally A.P., Mahfouf J.-F., Morcrette J.-J., Rayner N.A., Saunders R.W., Simon P., Sterl A., Trenberth K.E., Untch A., Vasiljevic D., Viterbo P., Woollen J., The ERA–40 reanalysis, Q. J. R. Meteorol. Soc., 2005, Vol. 131, Part B, No. 612, pp. 2961–3012. DOI: 10.1256/qj.04.176.