ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 13-28

Indication of natural hazards using terrestrial gravity field variations observed by GRACE system

A.V. Kiselev 1 , V.I. Gornyy 1 , S.G. Kritsuk 1 , A.A. Tronin 1 
1 Saint Petersburg Scientific-Research Centre for Ecological Safety RAS, Saint Petersburg, Russia
Accepted: 15.11.2016
DOI: 10.21046/2070-7401-2016-13-6-13-28
The paper discusses practical applications of terrestrial gravity field oscillations measured with the GRACE satellite system during a period of 13 years. The GRACE data are corrected for the impact of atmospheric water vapor content to remove a random atmospheric factor for which purpose AIRS (infrared atmospheric sounder of the AQUA satellite) data were used. A global map of the effective water layer thickness (EWLT) increment over the 13-year period was built. It was used to choose 12 regions for detailed study of the EWLT oscillations. Dramatic changes were found in the glacial cover of Antarctica, Greenland, and Arctic Archipelagos. The drought manifestations and their consequences within the basin of the Volga River and the Nearest East region are also discussed. It was shown on example of the anomalous water level rising of the Amur River in 2013 that the EWLT variations could be used for flood prognosis. Analysis of terrestrial gravity field oscillations led to a conclusion on the significance of the technogenic factor for the critical continuous declining of the Baikal Lake water level. We demonstrated that satellite observations of terrestrial gravity force oscillations provide a means to monitor regional hydrological regime and predict natural hazards.



Keywords: satellite, GRACE, gravity force, variations, terrestrial water storage changes, global tendency, cryosphere, drought, flooding, forecast, harvest, locust
Full text

References:

  1. http://blog.rushydro.ru/?p=9782.
  2. Kiselev A.V., Muratova N.R., Gornyy V.I., Tronin A.A., Svyaz' zapasov produktivnoi vlagi v pochve s polem sily tyazhesti Zemli (po dannym s"emok sputnikami GRACE) (Relation Between Available Water Content in Soil and Gravity force (According GRACE Data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 43–52.
  3. Makhinov A.N., Kim V.I., Voronov B.A., Navodnenie v basseine Amura 2013 goda: prichiny i posledstviya (Flooding in the Amur River basin in 2013: Causes and Consequences), Vestnik DVO RAN, 2014, No. 2, pp. 5−14.
  4. Obobshchayushchii doklad “Izmenenie klimata. 2007 g.”, Vklad rabochikh grupp I, II i III v Chetvertyi doklad ob otsenke Mezhpravitel'stvennoi gruppy ekspertov po izmeneniyu klimata (Climate Change. 2007. Summarizing Report. Working Groups I, II, and III Input into Forth Report about Estimation Intergovernmental Group of Experts in Climate Change), MGEIK, 2007, Geneva, Switzerland, 104 p., available at https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_ru.pdf (July, 2016).
  5. Tronin A.A., Gorny V.I., Kiselev A.V., Kritsuk S.G., Latypov I.Sh., Prognozirovanie vspyshek saranchovyh na osnove materialov sputnikovyh s’emok (Locust Palgues Forecast Using the Remote Sensing Data), Sovremennye problemy distancionnogo zondirovania Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 137−150.
  6. AIRS Science Team/Joao Texeira, Aqua AIRS Level 3 Monthly Standard Physical Retrieval (AIRS+AMSU), version 006, Greenbelt, MD, USA: NASA Goddard Earth Science Data and Information Services Center (GES DISC), 2013. DOI: 10.5067/AQUA/AIRS/DATA319.
  7. Arendt A.A., Luthcke S.B., Larsen C.F., Abdalati W., Krabill W.B., Beedle M.J., Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry, Journal of Glaciology, 2008, Vol. 54, No. 188, pp. 778-787.
  8. Chen J.L., Tapley B.D., Wilson C.R., Alaskan mountain glacial melting observed by satellite gravimetry, Earth and Planetary Science Letters, Vol. 248, Issues 1–2, 15 August 2006, pp. 368−378, ISSN 0012-821X, http://dx.doi.org/10.1016/j.epsl.2006.05.039.
  9. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 18 p.
  10. Jacob T., Wahr J., Pfeffer W.T., Swenson S., Recent contributions of glaciers and ice caps to sea level rise, Nature, 482, pp. 514–518.
  11. Kelley C.P., Mohtadi S., Cane M.A., Seager R., Kushnir Y., Climate change in the Fertile Crescent and implications of the recent Syrian drought, Proceedings of the National Academy of Sciences of the United States of America, 17 March 2015, Vol. 112, No. 11, pp. 3241–3246. DOI: 10.1073/pnas.1421533112. www.pnas.org/cgi/doi/10.1073/pnas.1421533112.
  12. Khan H.H., Khan A., Shakeel A., Gennero M.-C., Minh K.D., Cazenave A., Terrestrial water dynamics in the lower Ganges—estimates from ENVISAT and GRACE, Arabian Journal of Geosciences, 2013, Vol. 6, No. 10, pp. 3693−3702.
  13. Landerer F.W., Swenson S.C., Accuracy of scaled GRACE terrestrial water storage estimates, Water Resources Research, 2012, Vol. 48, W04531, p. 11. DOI: 10.1029/2011WR011453.
  14. McMillan M., Shepherd A., Sundal A., Briggs K., Muir A., Ridout A., Hogg A., Wingham D., Increased ice losses from Antarctica detected by CryoSat-2, Geophys. Res. Lett., 2014, Vol. 41, pp. 3899–3905.
  15. Moholdt G., Wouters B., Gardner A.S., Recent mass changes of glaciers in the Russian High Arctic, Geophysical Research Letters, 2012,. Vol. 39, L10502, 5, pp. 1−5.
  16. Panet I., Pollitz F., Mikhailov V., Diament M., Banerjee P., Grijalva K., Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra-Andaman earthquake, Geochem. Geophys. Geosyst., 2010, Vol. 11, Q06008. DOI: 10.1029/2009GC002905.
  17. Steffen H., Gitlein O., Denker H., Müller J., Timmen L., Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry, Tectonophysics, Vol. 474 (2009), pp. 69–77.
  18. Swenson S.C., Wahr J., Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 2006, Vol. 33, L08402. DOI: 10.1029/2005GL025285.
  19. Swenson S.C., GRACE monthly land water mass grids NETCDF RELEASE 5.0, Ver. 5.0, 2012, PO.DAAC, CA, USA, available at http://dx.doi.org/10.5067/TELND-NC005 (June, 2015).
  20. Tapley B.D., Bettadpur S., Watkins M., Reigber C., The Gravity Recovery and Climate Experiment: Mission overview and early results, Geophys. Res. Lett., 2004, Vol. 31, L09607.
  21. Velicogna I., Sutterley T.C., van den Broeke M.R., Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data, J. Geophys. Res., Space Physics, 2014, 119, pp. 8130–8137.