ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 63-74

On reconstruction of turbulent momentum flux in the atmospheric boundary layer under strong wind and hurricane conditions from measurements of sea surface microwave backscatter cross section on orthogonal polarization

Yu.I. Troitskaya 1 , V.I. Abramov 2, 1 , A.V. Ermoshkin 1 , E.M. Zuikova 1 , V.I. Kazakov 1 , D.A. Sergeev 1, 3 , A.A. Kandaurov 1, 3 , O.S. Ermakova 1, 3 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Radiophysical Research Institute, Nizhni Novgorod, Russia
3 N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
Accepted: 03.11.2016
DOI: 10.21046/2070-7401-2016-13-6-63-74
On the basis of laboratory experiments on simultaneous measurements of normalized X-band radar cross-section (NRCS) of water surface for co-polarized and de-polarized radar return and parameters of the turbulent boundary air layer for storm and hurricane conditions, and a comparison with the available in-situ measurements, we propose a geophysical model function (GMF) linking NRCS for X and C-band de-polarized radar return with the wind friction velocity which is one of the most important characteristics governing many geophysical processes (ocean circulation, storm surge, wave generation, mixing of the upper ocean layer, etc.). Traditional GMFs representing NRCS dependencies on wind speed on orthogonal polarization at standard meteorological height of 10 m are retrieved based on NRSC logarithmic dependency on wind friction velocity on orthogonal polarization. A comparison with in-situ measurement data shows that the proposed X-band GMF is similar to the empirical GMF for C-band. Based on this result, a GMF linking NRCS for the de-polarized radar return in the C-band and the wind friction velocity is suggested. The proposed GMF is applicable for remote retrieval of wind speed for storm and hurricane conditions.
Keywords: radar scattering on sea surface, co-polarized and de-polarized radar return, storm, hurricane, microwave remote sensing, polarization, boundary layers of atmosphere and ocean, wind speed, Reynolds stress
Full text


  1. Khintse I.O., Turbulentnost (Turbulence), Moscow: Fizmatlit, 1963, 680 p.
  2. Charnock H., Wind stress on a water surface, Q. J. Roy. Meteorol. Soc., 1955, Vol. 81, No. 350, pp. 639–640.
  3. Colton M.C., Plant W.J., Keller W.C., Geernaert G.L., Tower-based measurements of normalized radar cross-section from lake-Ontario – evidence of wind stress dependence, J. Geophys. Res., 1995, Vol. 100, No. C5, pp. 8791–8813.
  4. Fairall C.W., Bradley E.F., Hare J.E., Grachev A.A., Edson J.B., Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm, J. Clim., 2003, Vol. 16, No. 4, pp. 571–591.
  5. Foreman R.J., Emeis S., Revisiting the Definition of the Drag Coefficient in the Marine Atmospheric Boundary Layer, J. Phys. Oceanogr., 2010, Vol. 40, No. 10, pp. 2325–2332.
  6. Hersbach H., Stoffelen A., de Haan S., An improved C-band scatterometer ocean geophysical model function: CMOD5, J. Geophys. Res., 2007, Vol. 112, No. C3, pp. C03006.
  7. Holthuijsen L.H., Powell M.D., Pietrzak J.D., Wind and waves in extreme hurricanes, J. Geophys. Res. Ocean., 2012, Vol. 117, No. C9, pp. C09003.
  8. Hwang P.A., Zhang B., Toporkov J.V., Perrie W., Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval, J. Geophys. Res. Ocean., 2010, Vol. 115, No. 8. DOI: 10.1029/2009JC005995.
  9. Hwang P.A., Zhang B., Perrie W., Depolarized radar return for breaking wave measurement and hurricane wind retrieval, Geophys. Res. Lett., 2010, Vol. 37, No. 1. DOI: 10.1029/2009GL041780.
  10. Jones W.L., Schroeder L.C., Radar backscatter from the ocean: Dependence on surface friction velocity, Boundary-Layer Meteorol., 1978, Vol. 13, No. 1–4, pp. 133–149.
  11. Large W.G., Pond S., Open Ocean Momentum Flux Measurements in Moderate to Strong Winds, J. Phys. Oceanogr., 1981, Vol. 11, No. 3, pp. 324–336.
  12. Liu W.T., Progress in scatterometer application, J. Oceanogr., 2002, Vol. 58, No. 1, pp. 121–136.
  13. Liu W.T., Tang W., Relating Wind and Stress under Tropical Cyclones with Scatterometer, J. Atmos. Ocean. Technol., 2016, Vol. 33, No. 6, pp. 1151–1158.
  14. Liu W.T., Xie X., Sea Surface Wind/Stress Vector, Encyclopedia of Remote Sensing, 2014, pp. 759–767.
  15. Liu W.T., Xie X., Tang W., Scatterometer’s unique capability in measuring ocean surface stress, Oceanography from Space: Revisited, V. Barale, J.F.R. Gower, L. Alberotanza (Eds.), Springer, 2010, pp. 93–111.
  16. Monahan E.C., Muircheartaigh I., Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed, J. Phys. Oceanogr., 1980, Vol. 10, pp. 2094–2099.
  17. Moon I.-J., Kwon J.-I., Lee J.-C., Shim J.-S., Kang S.K., Oh I.S., Kwon S.J., Effect of the surface wind stress parameterization on the storm surge modeling, Ocean Model, 2009, Vol. 29, No. 2, pp. 115–127.
  18. Plant W.J., A relationship between wind stress and wave slope, J. Geophys. Res., 1982, Vol. 87, No. C3, pp. 1961–1967.
  19. Richter D.H., Bohac R., Stern D.P., An assessment of the flux profile method for determining air-sea momentum and enthalpy fluxes from dropsonde data in tropical cyclones, J. Atmos. Sci., 2016, Vol. 73, No. 7, pp. JAS–D–15–0331.1.
  20. Sverdrup H.U., Wind-Driven Currents in a Baroclinic Ocean; with Application to the Equatorial Currents of the Eastern Pacific, Proc. Natl. Acad. Sci. U.S.A., 1947, Vol. 33, No. 1, pp. 318–326.
  21. Tallapragada V., Bernardet L., Biswas M.K., Ginis I., Kwon Y., Liu Q., Marchok T., Sheinin D., Thomas B., Tong M., Trahan S., Wang W., Yablonsky R., Zhang X., Hurricane Weather Research and Forecasting (HWRF) Model: 2015 Scientific Documentation, 2015, 113 p.
  22. Troitskaya Yu., Abramov V., Ermoshkin A., Zuikova E., Laboratory modelling of cross-polarized radar return at severe wind conditions, IEEE Geosci. Remote Sens. Symp., 2014, pp. 3894–3897.
  23. Troitskaya Yu., Abramov V., Ermoshkin A., Zuikova E., Kazakov V., Sergeev D., Kandaurov A., Ermakova O., Laboratory study of cross-polarized radar return under gale-force wind conditions, Int. J. Remote Sens., 2016, Vol. 37, No. 9, pp. 1981–1989.
  24. Troitskaya Y.I., Sergeev D.A., Kandaurov A.A., Baidakov G.A., Vdovin M.A., Kazakov V.I., Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions, J. Geophys. Res. Ocean., 2012, Vol. 117, No. C11, C00J21.
  25. Vachon P.W., Wolfe J., C-band cross-polarization wind speed retrieval, IEEE Geosci. Remote Sens. Lett., 2011, Vol. 8, No. 3, pp. 456–459.
  26. Weissman D.E., Davidson K.L., Brown R.A., Friehe C.A., Li F., The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data, J. Geophys. Res., 1994, Vol. 99, No. C5, pp. 10087–10108.
  27. van Zadelhoff G.-J., Stoffelen A., Vachon P.W., Wolfe J., Horstmann J., Belmonte Rivas M., Scatterometer hurricane wind speed retrievals using cross polarization, Atmos. Meas. Tech. Discuss., 2013, Vol. 6, No. 4, pp. 7945–7984.
  28. Zhang B., Perrie W., Zhang J.A., Uhlhorn E.W., He Y. High-Resolution hurricane vector winds from C-band dual-polarization SAR observations, J. Atmos. Ocean. Technol., 2014, Vol. 31, No. 2, pp. 272–286.
  29. Zhang B., Perrie W., Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes, Bull. Am. Meteorol. Soc., 2012, Vol. 93, No. 4, Vol. 531–541.