ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 187-202

NOAA/AVHRR images navigation results in operational processing conditions

S.N. Katamanov 1 
1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
Accepted: 30.11.2016
DOI: 10.21046/2070-7401-2016-13-6-187-202
The navigation results obtained by the operational processing of NOAA/AVHRR images at the Center for Regional Satellite Monitoring of Environment of the Far-Eastern Branch of the Russian Academy of Sciences (CRSME FEB RAS) are presented. The navigation method of satellite images created in CRSME FEB RAS allows fully automatic navigation of each image obtained during a full receiving session with pixel accuracy. The developed navigation method is based on the orbital motion model SGP4 (with propagation NORAD TLE telegrams) and a mathematical model of physical image deformation. Pixel navigation accuracy for each image is achieved by computing satellite attitude angles (roll, pitch and yaw) based on ground control points that are automatically defined in an image or forecasting. Transfer of satellite attitude angles calculated by images ground control points is executed at the navigation forecast. The above mentioned images have been received on close satellite orbits in the same direction. The navigation results are presented and discussed for the long series of AVHRR imagery obtained with operational satellites NOAA (-15, -18, -19) from 2009 to 2015 in the CRSME FEB RAS. The comparison with alternative methods navigation results from foreign satellite centers is considered. Outcomes of NOAA/AVHRR automatic navigation can be seen in the RGB image gallery at the CRSME FEB RAS website (http://www.satellite.dvo.ru/gallery/sat_image).
Keywords: NOAA, AVHRR, satellite images, automatic navigation, ground control points, satellite attitude (roll, pitch and yaw), navigation attitude forecasting, close satellite orbits, map projection
Full text

References:

  1. Katamanov S.N., Tochnaya geograficheskaya privyazka izobrazhenii AVHRR/NOAA bez repernykh tochek (Accurate NOAA/AVHRR image navigation without ground control points), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 78–91.
  2. Katamanov S.N., Avtomaticheskii metod geograficheskoi privyazki izobrazhenii AVHRR/3 ot polyarno-orbital'nykh sputnikov serii MetOp (Automatic method navigation of AVHRR/3 imagery from polar-orbital MetOp satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 63–74.
  3. Epshtein Yu.S., Gerbek E.E., Metod tochnoi geograficheskoi privyazki izobrazhenii AVHRR NOAA (Method accurate navigation of NOAA/AVHRR imagery), Electronic journal “Issledovano v Rossii”, 2001, No. 41, pp. 456–464.
  4. Bordes P., Brunel P., Marsouin A., Automatic Adjustment of AVHRR Navigation, J. Atmos. Ocean. Technol., 1992, Vol. 9, No. 1, pp. 15–27.
  5. Brunel P., Marsouin A., Operational AVHRR navigation results, Int. J. Rem. Sens., 2000, Vol. 21, No. 5, pp. 951–972.
  6. Crawford P.S., Scheidgen P., Harrmann O., Landmark correction for polar orbiters, EUMETSAT Meteorological Satellite Conf., Weimar, Germany, 2003, 8 p.
  7. Dybbroe A., Improved navigation of Advanced Very High Resolution Radiometer data at high latitudes, Tech. Proc. of the 14th International TOVS Study Conf., Beijing, China, 25–31 May 2005, 8 p.
  8. Emery W.J., Baldwin D.G., Matthews D., Maximum cross correlation automatic satellite image navigation and attitude corrections for open-ocean image navigation, IEEE Trans. Geosci. Rem. Sens., 2003, Vol. 41, No. 1, pp. 33–42.
  9. Esquerdo J.C.D.M., Antunes J.F.G., Baldwin D.G., Emery W.J., Junior J.Z., An automatic system for AVHRR land surface product generation, Int. J. Rem. Sens., 2006, Vol. 27, No. 18, pp. 3925–3942.
  10. Eugenio F., Marques F., Automatic satellite image georeferencing using a contour-matching approach, IEEE Trans. Geosci. Rem. Sens., 2003, Vol. 41, No. 12, pp. 2869–2880.
  11. Eugenio F., Marcello J., Featured-based algorithm for the automated registration of multisensorial/multitemporal oceanographic satellite imagery, Open Access J.: Algorithms, 2009, Vol. 2, No. 3, pp. 1087–1104.
  12. Huseby R.B., Halck O.M., Solberg R., A model-based approach for geometrical correction of optical satellite images, Int. J. Rem. Sens., 2005, Vol. 26, No. 15, pp. 3205–3223.
  13. Kamekawa N., Navigation adjustment for polar orbital satellites, Meteorological Satellite Center Technical Note, Meteorological Satellite Center of JMA, February 2012, No. 57, pp. 27–38, (In Japanese).
  14. Katamanov S.N., Automatic navigation of one pixel accuracy for meteorological satellite imagery, Proc. 1st Russia and Pacific Conf. on Computer Technology and Applications, Vladivostok, Russia, 2010, pp. 269–274.
  15. Khlopenkov K.V., Trishchenko A.P., Luo Y., Achieving subpixel georeferencing accuracy in the Canadian AVHRR processing system, IEEE Trans. Geosci. Rem. Sens., 2010, Vol. 48, No. 4, pp. 2150–2161.
  16. Marsouin A., Brunel P., Atkinson N., AAPP documentation – Annex of scientific description: AAPP navigation, EUMETSAT, Version 1.3, October 2011, 29 p.
  17. Moreno J., Melia J., A method for accurate geometric correction of NOAA AVHRR HRPT Data, IEEE Trans. Geosci. Rem. Sens., 1993, Vol. 31, No. 1, pp. 204–226.
  18. Patt F.S., Gregg W.W., Exact closed-form geolocation algorithm for Earth survey sensors, Int. J. Rem. Sens., 1994, Vol. 15, No. 18, pp. 3719–3734.
  19. Pergola N., Tramutoli V., SANA: sub-pixel automatic navigation of AVHHR imagery, Int. J. Rem. Sens., 2000, Vol. 21, No. 12, pp. 2519–2524.
  20. Pergola N., Tramutoli V., Two years of operational use of Sub-pixel Automatic Navigation of AVHRR scheme: accuracy assessment and validation, Rem. Sens. Env., 2003, Vol. 85, No. 2, pp. 190–203.
  21. Rosborough G.W., Baldwin D., Emery W.J., Precise AVHRR image navigation, IEEE Trans. Geosci. Rem. Sens., 1994, Vol. 32, pp. 644–657.
  22. Scheidgen P., Harrmann O., Crawford P.S., Improvement of image navigation by means of Doppler correction and landmark correction for polar orbiters, EUMETSAT Meteorological Satellite Conf., Dublin, Ireland, 2002, pp. 168–173.
  23. Snyder J.P., Map projections – a working manual, USGS Professional Paper 1395, U.S. Government Printing Office, Washington, 1987, 383 p.
  24. Vallado D.A., Crawford P.S., Hujsak R., Kelso T.S., Revisiting spacetrack report #3, AIAA/AAS Astrodynamics Specialist Conf., Keystone, CO, 21–24 August 2006, 94 p.
  25. Wessel P., Smith W.H.F., A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res., 1996, Vol. 101, No. B4, pp. 8741–8743.