ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 265-274

The study of Mercury's surface by cartography methods based on the newest topographic data derived from MESSENGER image processing

А.Yu. Zharkova 1 , I.P. Karachevtseva 1 , A.E. Zubarev 1 , E.S. Brusnikin 1 , A.A. Kokhanov 1 , М.А. Kreslavskiy 2, 1 
1 Moscow State University of Geodesy and Cartography, Moscow, Russia
2 University of California - Santa Cruz, Santa Cruz, USA
Accepted: 26.08.2016
DOI: 10.21046/2070-7401-2016-13-5-265-274
In 2015 MESSENGER completed its mission that lasted for four years. As a result over 277 000 images were obtained that provide creation of digital elevation models (DEMs) with medium and low resolution (from 0.5 to 22 km/pixel). Correlation analysis of current topographic models showed big discrepancies between global DEMs, related to differences in methods of determining heights and also with strong influence of temperature on the parameters of MDIS system (Becker et al., 2014). New digital terrain models (DTMs) with resolution 30–150 m/ pixel and elevation accuracy up to ±10 m were created based on photogrammetric processing of detailed MESSENGER stereo images (10–20 m/pixel). Using new DTMs quantitative measurements of flat-floored craters and hollows were carried out (Zharkova et al., 2016). These data as well as small crater catalogue and high resolution DTMs are available via MExLab Planetary Geoportal ( Data received by MESSENGER during the years of the mission has not exhausted all its scientific potential because detailed dataset is currently being extended. For example, using the latest global DEM with resolution 665 m/pixel we calculated the statistical characteristics of morphometric parameters of Mercury relief that can be used to assess the relative geological age of the volcanic plains on the planet.
Keywords: Mercury, MESSENGER, MDIS NAC stereo images, DEM/DTM, quantitative measurements, morphometric analysis, statistical characteristics of the relief morphometric parameters
Full text


  1. Zharkova A.Yu., Rodionova Zh.F., Pugacheva S.G., Karachevtseva I.P., Razrabotka nastennoi karty Merkuriya po dannym KA MESSENGER (Development of Mercury wall map by MESSENGER data), Conf. "International Map Year in Russia, combining space and time", Abstracts, Moscow, 2016.
  2. Kokhanov A.A., Kreslavskiy M.A., Karachevtseva I.P., Matveev E.N., Kartografirovanie raschlenennosti poverkhnosti Luny na osnove global'noy tsifrovoy modeli rel'efa GLD100 (Mapping of the statistical characteristics of the lunar relief on the basis of the global digital elevation model GLD-100), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 136–153.
  3. Kokhanov A.A., Kreslavskiy M.A., Karachevtseva I.P., Small impact craters in the polar region of the Moon: peculiarities of morphometric characteristics, Solar System Research, 2015, 49 (5), pp. 295–302. DOI: 10.1134/S0038094615050068.
  4. Bart G., The quantitative relationship between small impact crater morphology and regolith depth, Icarus, 2014, Vol. 235, pp. 130–135. DOI: 10.1016/j.icarus.2014.03.020.
  5. Becker K.J., Robinson M.S., Becker T.L., Weller L.A., Edmundson K.L., Neumann G.A., Perry M.E., Solomon S.C., First Global Digital Elevation Model of Mercury, Abstract 47th Lunar and Planetary Science Conference, 2016, LPI Contribution No. 1903, p. 2959. URL:
  6. Becker K.J., Becker T.L., Edmundson K.L., Gaskel R.W., McNutt R.L., Murchie S.L., Neumann G.A., Perry M.E., Prockter L.M., Robinson M.S., Solomon S.C., Stephens G.K., Turner F.S., Weller L.A., Progress Towards a Global Digital Elevation Model for Mercury, 45th Lunar and Planetary Science Conference, 2014, Abstract # 1777.
  7. Cook A.C., Robinson M.S., Mariner 10 stereo image coverage of Mercury, Journal of Geophysical Research, 2000, Vol. 105, Issue E4, pp. 942–9444. DOI: 10.1029/1999JE001135.
  8. Denevi B.W., Ernst C.M., Meyer H.M., Robinson M.S., Murchie S.L., Whitten J.L., Head J.W., Watters Th.R., Solomon S.C., Ostrach L.R., Chapman C.R., Byrne P.K., Klimczak Ch., Peplowski P.N., The distribution and origin of smooth plains on Mercury, Journal of Geophysical Research, 2013, Vol. 118, Issue 5, pp. 891–907.
  9. Elgner S., Stark A., Oberst J., Perry M.E., Zuber M.T, Robinson M.S., Solomon S.C., Mercury׳s global shape and topography from MESSENGER limb images, Planetary and Space Science, 2014, Vol. 103, pp. 299–308. DOI: 10.1016/j.pss.2014.07.019.
  10. Hawkins S.E., Boldt J.D., Darlington E.H., Espiritu R., Gold R.E., Gotwols B., Grey M. P., Hash C.D., Hayes J.R., Jaskulek S.E., Kardian C.J., Keller M.R., Malaret E.R., Murchie Scott L., Murphy P.K., Peacock K., Prockter L.M., Reiter R.A., Robinso M. S., Schaefer E.D., Shelton R.G., Sterner R.E., Taylor H.W., Watters Th.R., Williams B.D., The Mercury Dual Imaging System on the MESSENGER Spacecraft, Space Science Reviews, 2007, Vol. 131, Issue 1–4, pp. 247–338.
  11. Kokhanov A.A., Bystrov A.Y., Kreslavsky M.A., Matveev E.V., Karachevtseva I.P., Automation of morphometric measurements for planetary surface analysis and cartography, Int. Arch. Photogramm Remote Sens. Spatial Inf. Sci., 2016, XLI-B4, pp. 431–433.
  12. Kreslavsky M.A., Head J.W., Neumann G.A., Zuber M.T., Smith D.E. Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units, Geophysical Research Letters, 2014, Vol. 41, Issue 23, pp. 8245–8251. DOI: 10.1002/2014GL062162.
  13. Kreslavsky M.A., Head J.W., Neumann G.A., Rosenburg M.A., Aharonson O., Smith D.E., Zuber M.T., Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units, Icarus, 2013, 226, pp. 52–66. DOI:10.1016/j.icarus.2013.04.027.
  14. McNutt R.L., Solomon S.C., Bedini P.D., Anderson B.J., Blewett D.T., Evan L.G., Gol R.E., Krimigis S.M., Murchi S.L., Nittle L.R., Phillips R.J., Prockter L.M., Slavin J.A., Zuber M.T., Finnegan E.J., Grant D.G., MESSENGER at Mercury: Early orbital operations, Acta Astronautica, 2014, Vol. 93, pp. 509–515.
  15. Oberst J., Preusker F., Phillips R.J., Watters T.R., Head J.W., Zuber M.T., Solomon S.C., The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models, Icarus, 2010, Vol. 209, Issue 1, pp. 230–238. DOI: 10.1016/j.icarus.2010.03.009.
  16. Zharkova A.Yu., Kreslavsky M.A., Brusnikin E.S., Krasilnikov S.S., Zubarev A.E., Head J.W., Karachevtseva I.P., Small flat-floored craters on Mercury: implications for regolith thickness, Icarus, 2016 (in press).
  17. Zharkova A.Y., Rodionova Jh.F., Kokhanov A.A., Karachevtseva I.P. New cartography of Mercury: maps and globe, 6th Moscow Solar System Symposium, Space Research Institute, Moscow, 2015.
  18. Zubarev A.E., Nadezhdina I.E., Kozlova N.A., Brusnikin E.S., Karachevtseva I.P. Special software for planetary image processing and research, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, 2016, pp. 529–536. DOI: 10.5194/isprs-archives-XLI-B4-529-2016.
  19. Zuber M.T., Smith D.E., Phillips R.J., Solomon S.C., Neumann G.A., Hauck II S.A., Peale S.J., Barnouin O.S., Head J.W., Johnson C.L., Lemoine F.G., Mazarico E., Sun X.L., Torrence M.H., Freed A.M., Klimczak C., Margot J.-L., Oberst J., Perry M.E., McNutt Jr. R.L., Balcerski J.A., Michel N., Talpe M.J., Yang D., Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry, Science, 2012, Vol. 336, pp. 217–220. DOI: 10.1126/science.1218805.