ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 55-67

Experimental research of short-wave part of wind-waves spectrum. Preliminary analysis of radiometric remote measurements

I.N. Sadovsky 1 , А.V. Kuzmin 1 , M.N. Pospelov 1 , D.S. Sazonov 1 , E. V. Pashinov 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 01.08.2016
DOI: 10.21046/2070-7401-2016-13-5-55-67
The paper presents the results of wind-waves research performed by authors during four years of experiments. Determination of gravity-capillary wave spectrum parameters was carried out on the basis of a method called Non-Linear Radio-Thermal Resonance Spectroscopy (NRRS-method). This method allows one to retrieve the curvature spectrum of gravity-capillary waves and the value of long-wave slope variance, both averaged over azimuth angle. As an input data for the NRRS-method, the results of remote radio-polarimetric observations of waved sea surface are used. The results cover the range of wave numbers from 0.39 up to 15.707 rad/cm and are obtained from sea-surface self-radiation measurements at a wavelength of 8 mm. In total, about 1500 experimental curves corresponding to an extensive set of weather condition combinations are retrieved. The restored spectral curves have common features with well-known models of spectrum presented in literature. Their prominent dependence on wind intensity is demonstrated.
Keywords: spectrum, wind waves, gravity-capillary range, microwave radiation, remote sensing, method of Non-Linear Radio-Thermal Resonance Spectroscopy
Full text


  1. Bespalova E.A., Veselov V.M., Glotov A.A., Militskii Yu.A., Mirovskii V.G., Pokrovskaya I.V., Popov A.E., Raev M.D., Sharkov E.A., Etkin V.S., Issledovanie anizotropii vetrovogo volneniya po variatsiyam polyarizovannogo teplovogo izlucheniya (A study of wind waves anisotropy based on variations of polarized thermal radiation), Dokl. AN SSSR, 1979, Vol. 246, No. 6, pp. 1482–1485.
  2. Irisov V.G., Trokhimovskii Yu.G., Etkin V.S. Radioteplovaya spektroskopiya morskoi poverkhnosti (Radio spectroscopy of sea surface), DAN SSSR, 1987, Vol. 297, No. 3, pp. 587–589.
  3. Kravtsov Yu.A., Mirovskaya E.A., Popov E.A., Troitskii I.A., Etkin V.S., Kriticheskie yavleniya pri teplovom izuchenii periodicheski nerovnoi vodnoi poverkhnosti (Critical phenomena in the thermal radiation of the periodically rough water surface), Izv. AN SSSR, FAO, 1978, Vol. 14, No. 7, pp. 733–739.
  4. Kuz'min A.V., Goryachkin Yu.A., Ermakov D.M., Ermakov S.A., Komarova N.Yu., Kuznetsov A.S., Repina I.A., Sadovskii I.N., Smirnov M.T., Sharkov E.A., Chukharev A.M., Morskaya gidrofizicheskaya platforma “Katsiveli” kak podsputnikovyi poligon na Chernom more (Marine Hydrophysical platform "Katsiveli" as a sub-satellite test polygon on the Black Sea), Issledovanie Zemli iz kosmosa, 2009, No. 1, pp. 31–44.
  5. Sadovskii I.N., Metodika vosstanovleniya parametrov spektra vetrovogo volneniya na osnove dannykh uglovykh radiopolyarimetricheskikh izmerenii (Wind-wave spectra parameters retrieval method based on measuring angular dependences of the brightness temperature), Issledovanie Zemli iz kosmosa, 2008, No. 6, pp. 1–7.
  6. Sadovskii I.N., Polyarizatsionnye radioteplovye metody v issledovaniyakh parametrov morskogo volneniya: dis. kand. phys.-mat. nauk (Polarization techniques in the study of sea waves parameters: syn. cand. phys.-math. sci. thesis), Moscow, 2007, 184 p.
  7. Sadovskii I.N., Kuzmin A.V., Pospelov M.N, Issledovanie parametrov spektra vetrovogo volneniya po dannym distantsionnykh radiopolyarimetricheskikh izmerenii (Wind-wave spectrum parameters investigation based on remote radio-polarimetric measurements), Issledovanie Zemli iz kosmosa, 2009, No. 2, pp. 1–8.
  8. Apel J.R., An improved ocean surface wave vector spectrum, J. Geophysical Research, 1994, Vol. 99, pp. 16.269–16.291.
  9. Donelan M.A., Pierson W.J.P., Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry, J. Geophysical Research, 1987, Vol. 92, pp. 4971–5029.
  10. Elfouhaily T., Chapron B., Katsaros K., Vandemark D., A unified directional spectrum for long and short wind-driven waves, J. Geophysical Research, 1997, Vol. 102, pp. 15.781–15.796.Katsaros K., Vandemark D., A unified directional spectrum for long and short wind-driven waves, J. Geophysical Research, 1997, Vol. 102, pp. 15.781–15.796.
  11. Kudryavtsev V.N., Makin V.K., Chapron B., Coupled sea surface-atmosphere model. 2. Spectrum of short wind waves, J. Geophysical Research, 1999. Vol. 104, No. C4, pp. 7625–7639.
  12. Kuzmin A., Pospelov M., Trokhimovskii Yu., Sea surface parameters retrieval by passive microwave polarimetry, In: Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, Eds. P. Pampaloni, S. Paloscia, VSP Intern. Science Publishers. Zeist, The Netherlands, 2000, pp. 3–11.
  13. Pospelov M.N., De Biasio F., Goryachkin Y.N., Komarova N.Y., Kuzmin A.V., Pampaloni P., Repina I.A., Sadovsky I.N., Zecchetto S., Air–sea interaction in a coastal zone: The results of the CAPMOS'05 experiment on an oceanographic platform in the Black Sea, Atmospheric Research, 2009, Vol. 94, No. 1, pp. 61–73.
  14. Trokhimovskii Yu.G., The model for microwave thermal emission of sea surface with waves, Earth Observation Remote Sensing, 1997, Vol. 1, pp. 39–49.
  15. Wentz F.J., A model function for ocean microwave brightness temperature, J. Geophysical Research, 1983, Vol. 88, No. C3, pp.1892–1907.