ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 167-191

Definition of factors of spatial variation in vegetation using RSD, DEM and field data by example of the central part of Murmansk Region

M.Yu. Puzachenko 1 , T.V. Chernenkova 2 
1 Institute of Geography RAS, Moscow, Russia
2 Centre for Forest Ecology andjavascript:; Production RAS, Moscow, Russia
Accepted: 18.07.2016
DOI: 10.21046/2070-7401-2016-13-5-167-191
The work is devoted to the identification of regularities of formation of the typological diversity of vegetation through the use of digital elevation models (DEM), field and remote sensing data (RSD). The study area is located in the central part of Murmansk Region and covers the greater part of the Lapland Nature Reserve, the Khibiny Massif, as well as the neighborhood of a metallurgical plant. The results of stepwise discriminant analysis demonstrated the possibility to identify the relatively large number of natural and anthropogenic damaged types of plant communities at the level of groups of associations. The map of actual vegetation of the study region (scale 1:200 000) was created. The analysis of the obtained map showed that about 23% of the study area were anthropogenically transformed plant communities of varying degrees of transformation. The ecologo-phytocoenotic approach, used for the classification, allows to reflect in the legend of the map the information about natural and transformed plant communities of different ecological condition. The use of different spatial data sources, along with the use of methods of statistical analysis, makes it possibile not only to develop a map of vegetation cover, but also to highlight key driving forces at the regional level, among which the main ones are the climatic altitude gradients, water supply conditions, anthropogenic transformations and natural self-development of plant communities.
Keywords: forest cover, diversity, ecosystem variation, mapping, classification, remote sensing data, digital elevation models, Murmansk Region
Full text

References:

  1. Bartalev S.A., Loupian E.A., Issledovaniya i razrabotki IKI RAN po razvitiyu metodov sputnikovogo monitoringa rastitel'nogo pokrova (R&D on methods for satellite monitoring of vegetation by the Russian Academy of Sciences’ Space Research Institute), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 197–214.
  2. Ignatov M.S., Afonina O.M., Spisok mhov territorii byvshego SSSR (List of the mosses of the former USSR), Arctoa, 1992, Vol. 1, No. 1–2, pp. 1–87.
  3. Konstantinova N.A., Potemkin A.D., Shlyakov R.N., Spisok pechenochnikov i antotserotovykh territorii byvshego SSSR (Spisok liverworts and antocerot mosses of the former USSR), Arctoa, 1992, Vol. 1, No. 1–2, pp. 87–127.
  4. Koroleva N.E., Rastitel'nost' Murmanskoi oblasti kak komponent bioraznoobraziya (The vegetation of the Murmansk region as a component of biodiversity), Vestnik MGTU, 2009, Vol. 12, No. 1, pp. 153–166.
  5. Lastochkin A.N., Rel'ef zemnoi poverkhnosti (Landform), Leningrad: Nedra, 1991, 339 p.
  6. Neshataev V.Yu., Neshataeva V.Yu., Sintaksonomicheskoe raznoobrazie sosnovykh lesov Laplandskogo zapovednika (Sintaksonomičeskoe variety of pine forest Lapland nature reserve), Bot. zhurn., 2002, Vol. 87, No. 1, pp. 99–106.
  7. Puzachenko M.Yu., Otsenka sostoyaniya lesov na osnove polevoi i distantsionnoi informatsii na primere yugo-zapada Valdaiskoi vozvyshennosti (Forest assessment, based on field and distance information on the example of the South-East of Valdai hills), Lesnye resursy taezhnoi zony Rossii: problemy lesopol'zovaniya i lesovosstanovleniya. Proc. Conf., Petrozavodsk: KarNC RAN, 2009, pp. 79–81.
  8. Puzachenko Yu.G., Prilozhenie teorii fraktalov k izucheniyu struktury landshafta (Application of fractals theory to the study of the structure of the landscape), Izvestiya RAN, Ser. geogr., 1997. No. 2, pp. 24-40.
  9. Puzachenko Yu.G., Matematicheskie metody v ekologicheskikh i geograficheskikh issledovaniyakh (Mathematical methods in ecological and geographical research), Moscow: ACADEMA, 2004, 416 p.
  10. Puzachenko Yu.G., Aleshchenko G.M., Molchanov G.S., Mnogomernyi analiz aerofotosnimkov pri izuchenii struktury landshafta (Multivariate analysis of aerial photos when studying the structure of the landscape), Izveatiya RAN, Ser. geograf., 1999, No. 2, pp. 80–91.
  11. Puzachenko Yu.G., Sandlerskii R.B., Krenke A.N., Puzachenko M.Yu., Mul'tispektral'naya distantsionnaya informatsiya v issledovanii lesov (Multispectral remote information in the study forests), Lesovedenie, 2014, No. 5, pp. 13–29.
  12. Sandlerskii R.B., Puzachenko Yu.G., Termodinamika biogeotsenozov na osnove distantsionnoi informatsii (Thermodynamics of sites based on distance information), Zhural Obshch. Biol., 2009, Vol. 70, No. 2, pp. 121–142.
  13. Simonov Yu.G., Morfometricheskii analiz rel'efa (Morphometric analysis of relief), Moscow-Smolensk: Izd-vo Smolenskogo gumanitarnogo un-ta, 1998, 271 p.
  14. Sysuev V.V., Morfometricheskii analiz geofizicheskoi differentsiatsii landshaftov (Morphometric analysis of geophysical landscape differentiation), Izvestiya RAN, Ser. geograf., 2003, No. 4, pp. 36–50.
  15. Sysuev V.V., Modelirovanie geofizicheskoi differenciacii geosistem (Geophysical modeling of geosystems differentiation), In: Geografiya, obshchestvo, okruzhayushchaya sreda, Vol. 2, Funktsionirovanie i sovremennoe sostoyanie landshaftov, Moscow: Izd. dom Gorodec, 2004, pp. 48–70.
  16. Tishkov A.A., Aktual'naya biogeografiya kak metodologicheskaya osnova sokhraneniya bioraznoobraziya (Actual biogeography as a framework for the conservation of biodiversity), Voprosy geografii, Sbornik No. 134, Moscow: Izd. Dom “Kodeks”, 2012, pp. 15–57.
  17. Haken H., Informatsiya i samoorganizatsiya. Makroskopicheskii podkhod k slozhnym sistemam (Information and self-organization. Macroscopic approach to complex systems), Moscow: KomKniga, 2005, 248 p.
  18. Haken H., Sinergetika (Sinergetica), Moscow: Mir, 1980, 406 p.
  19. Cherepanov S.K., Sosudistye rasteniya Rossii i sopredel'nykh gosudarstv (v predelakh byvshego SSSR) (Vascular plants of Russia and the adjacent States (within the former Soviet Union), Saint-Petersburg, 1995, 992 p.
  20. Chernen'kova T.V., Basova E.V., Bochkarev Ju.N., Puzachenko M.Ju. Otsenka bioraznoobraziya lesov v zone vliyaniya gorno-metallurgicheskogo kombinata “Severonikel'” (Assessment of forest biodiversity in the zone of influence of mining-metallurgical plant “Severonikel′”), Lesovedenie, 2009, No. 6, pp. 38–45.
  21. Chernen'kova T.V., Kabirov R.R., Basova E.V., Vosstanovitel'nye suktsessii severotaezhnykh el'nikov pri snizhenii aerotekhnogennoi nagruzki (Regeneration Successions of Northern Taiga Spruce Forests under Reduction of Aerotechnogenic Impact), Lesovedenie, 2011, No. 6, pp. 49–66.
  22. Chernen'kova T.V., Puzachenko M.Ju., Koroleva N.E., Basova E.V., Ocenka sostojanija lesnogo pokrova Murmanskoj oblasti na osnove nazemnyh issledovanij i distancionnoj informacii Assessment of Forest Spatial Differentiation in Murmansk Province using Field Surveys and Remote Sensing Data), Lesovedenie, 2013, No. 5, pp. 86–96.
  23. Sharaya L.S., Sharyi P.A., Ispol'zovanie morfometricheskikh statistik dlya opisaniya vnutrennei geometrii ravninnykh i gornykh mestnostei (Use statistics to describe internal morphometric geometry lowland and mountainous areas), Izvestiya Samarskogo nauch. centra RAN, 2003. Vol. 5, No. 2, pp. 278–286.
  24. Jelektronnyj uchebnik po statistike (Electronic statistics textbook), Moscow: StatSoft, Inc., 2001, available at: http://www.statsoft.ru/home/textbook/default.htm.
  25. Bailey R.G., Identifying Ecoregion Boundaries, Environmental Management, 2005, Vol. 34, No. 1, pp. 14–26.
  26. Birth G., McVey G., Measuring the Color of Growing Turf with a Reflectance Spectrophotometer, Agronomy Journal, 1968, No. 60, pp. 640–643.
  27. Chen J., Evaluation of Vegetation Indices and Modified Simple Ratio for Boreal Applications, Canadian Journal of Remote Sensing, 1996, No. 22, pp. 229–242.
  28. Chernenkova T.V., Puzachenko M.Yu., Morozova O.V., Ogureeva G.N., Kuperman R.G., An approach for mapping Northern Fennoscandian forests at different scales, Botanica Pacifica. A journal of plant science and conservation, 2015, Vol. 4, No. 1, pp. 1–10.
  29. Chemin Y., Evapotranspiration of crops by remote sensing using the energy balance based algorithms, International Yellow River Forum on River Basin Management, Zhenghou, China, 2003, pp. 76–85.
  30. Drury S., Image Interpretation in Geology, London: Allen and Unwin, 1987, 243 p.
  31. Gao B., Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space, Proceedings of SPIE 2480, 1995, pp. 225–236.
  32. Fatoyinbo T.E., Simard M., Washington-Allen R.A., Shugart H.H., Landscape-scale extent, height, biomass, and carbon estimation of Mozambique's mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data, J. Geophys. Res., Vol. 113, G02S06, 2008. DOI:10.1029/2007JG000551
  33. Gitelson A., Merzlyak M., Remote Sensing of Chlorophyll Concentration in Higher Plant Leaves, Advances in Space Research, 1998, No. 22, pp. 689–692.
  34. Huete A., A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 1988, No. 25, pp. 295–309.
  35. Kay J.J., Fraser R.A., Exergy Analysis of Ecosystems: Final Draft Establishing a Role for Thermal Remote Sensing, University of Waterloo, Ontario, Canada, 2001, 79 p.
  36. Lawley V., Lewis M., Clarke K., Ostendorf B., Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review, Ecol. Indicators., 2015, http://dx.doi.org/10.1016/j.ecolind.2015.03.021.
  37. Lopez-Garcia M., Caselles V., Mapping Burns and Natural Reforestation using Thematic Mapper Data, Geocarto International, 1991, No. 6, pp. 31–37.
  38. McRoberts R.E., A model-based approach to estimating forest area. Remote Sensing of Environment, 2006, No. 103, pp. 56−66.
  39. Mücher C.A., Klijn J.A., Wascher D.M., Chaminée J.H.J., A new European Landscape Classification (LANMAP): A transparent, flexible and user-oriented methodology to distinguish landscapes, Ecological Indicators 10, 2010, pp. 87–103.
  40. Pinto-Correia T., Cancela d’Abreu A., Oliveira R., Landscape Units in Portugal and the development and application of Landscape Indicators, Dramstad W., Sogge C. (Eds.), Agricultural Impacts on Landscapes. Developing Indicators for Policy Analysis, NIJOS/OECD, NIJOS 7/2003, Oslo, 2003.
  41. Riggs G., Hall D., Salomonson V., A Snow Index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectrometer, Geoscience and Remote Sensing Symposium, IGARSS'94. Vol. 4: Surface and Atmospheric Remote Sensing: Technologies, Data Analysis, and Interpretation, 1994, pp. 1942–1944.
  42. Rouse J., Haas R., Schell J., Deering D., Monitoring Vegetation Systems in the Great Plains with ERTS, Third ERTS Symposium, NASA, 1973, pp. 309–317.
  43. Santesson R., The lichens and lichenicolous fungi of Sweden and Norway, Lund, 1993, 240 p.
  44. Tucker C., Red and Photographic Infrared Linear Combinations for Monitoring Vegetation, Remote Sensing of Environment, 1979, No. 8, pp. 127–150.
  45. Tomppo E., Olsson H., Ståhl G., Nilsson M., Hagner O., Katila M., Combining national forest inventory field plots and remote sensing data for forest databases, Remote Sensing of Environment, 2008, No. 112, pp. 1982−1999.
  46. Turcotte D.L., Fractals and Chaos in Geology and Geophysics, Second edition, Cambridge: Un. Press, 1997, 398 p.
  47. van Eetvelde V., Antrop M., Landscape character beyond landscape typologies. Methodological issues in trans-regional integration in Belgium, Proceedings of the 18th International Annual ECLAS Conference, 2007, pp. 229–239.
  48. Jorgensen S.V., Svirezhev Y.M., Towards a Thermodynamic Theory for Ecological Systems, Elsevier Ltd. The Boulevard, Langford Lane Kidlington, Oxford OX5 1GB UK, 2004, 369 p.