ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 227-237

Features of mesoscale cyclogenesis over the eastern sector of the Eurasian Arctic

I.A. Gurvich 1 , E.V. Zabolotskikh 2 , M.K. Pichugin 1 
1 V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Russian State Hydrometeorological University, St. Peterburg, Russia
Accepted: 13.07.2016
DOI: 10.21046/2070-7401-2016-13-5-227-237
We investigated the characteristics of mesoscale cyclogenesis over the eastern sector of the Eurasian Arctic (EEA) in 2007 (anomalously low sea ice cover) and 2014 (high sea ice cover) for the period of 2003−2014. The autumn season (September–November) was chosen for investigating as the period of intensification of mesoscale cyclogenesis in EEA. Mesocyclones were identified in the fields of surface wind vector from NCEP_CFSR high resolution reanalysis data and in cloud signatures in visible and infrared images of Terra/Aqua MODIS. The conditions of their formation and development were assessed by surface analysis and baric topography synoptic maps of NOAA National Climatic Data Center and ERA Interim reanalysis. Quantitative estimates of oceanic and atmospheric parameters were obtained from satellite microwave measurements using original algorithms. Comprehensive analysis of multisensory satellite data and the reanalysis revealed that the dependence of mesocyclonic activity on changes in ice cover area was clearly expressed for the Laptev and East Siberian Seas and virtually non-existent for the Kara and Chukchi Seas. Unlike other regions, the peak of mesoscale cyclogenesis is shifted from the winter months to October. Mesocyclones over the EEA occur despite lower convective instability of the atmosphere as compared to other regions of mesoscale cyclogenesis. It can be assumed that the contribution of baroclinic instability of the atmospheric boundary layer during their formation prevails over the contribution of convection.
Keywords: mesocyclones, eastern Arctic, multisensory, satellite, remote sensing, water vapor, cloud liquid water, sea surface wind, reanalysis
Full text


  1. Gurvich I.A., Mitnik L.M., Mitnik M.L., Mezomasshtabnyi tsiklogenez nad Yaponskim morem 7–13 yanvarya 2009 g. po sputnikovym mul'tisensornym dannym (Mesoscale cyclogenesis over the Japan Sea on 7–13 January 2009 from satellite multisensory data), Issled. Zemli iz kosmosa, 2010, No. 4, p. 11–22.
  2. Gurvich I.A., Zabolotskikh E.V., Mezomasshtabnye polyarnye tsiklony nad vostochnym sektorom Arktiki po dannym mul'tisensornogo sputnikovogo zondirovaniya (Mesoscale polar lows over the Eastern Arctic Sector using the multisensory satellite remote sensing), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 101–112.
  3. Zabolotskikh E.V., Gurvich I.A., Shapron B., Novye raiony rasprostraneniya polyarnykh tsiklonov v Arktike kak rezul'tat sokrashcheniya ploshchadi ledyanogo pokrova (New areas of polar lows over the Arctic as a result of the decrease in sea ice extent), Issled. Zemli iz kosmosa, 2015, No. 2, pp. 64–77.
  4. Zimich P.I., Atmosfernye protsessy i pogoda Vostochnoi Arktiki (Atmospheric processes and weather Eastern Arctic), Vladivostok: Dal'nauka, 1998, 236 p.
  5. Zimich P.I., Uragany poberezh'ya Chukotki i ikh prognozirovanie (Hurricanes of Chukotka coast and their forecasting), Magadan: Dal'nauka, 2002, 174 p.
  6. Ivanov V.V., Alekseev V.A., Alekseeva T.A., Koldunov N.V., Repina I.A., Smirnov A.V., Arkticheskii ledyanoi pokrov stanovitsya sezonnym? (Does Arctic Ocean Ice Cover Become Seasonal?), Issled. Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  7. Blechschmidt A.M., A 2-year climatology of polar low events over the Nordic Seas from satellite remote sensing, Geophys. Res. Lett., 2008, Vol. 35. No. 9. L09815. DOI:10.1029/2008GL033706.
  8. Bobylev L.P., Zabolotskikh E.V., Mitnik L.M., Mitnik M.L., Arctic Polar Low Detection and Monitoring Using Atmospheric Water Vapor Retrievals from Satellite Passive Microwave Data, IEEE Trans. Geosci. Rem. Sens., 2011, Vol. 49, No. 9, pp. 3302–3310.
  9. Chen F., von Storch H., Trends and Variability of North Pacific Polar Lows, Adv. Meteorol., 2013, Vol. 2013, ID 170387, 11 p.
  10. Condron A., Renfrew I.A., The impact of polar mesoscale storms on northeast Atlantic Ocean circulation, Nat. Geosci., 2012, Vol. 6, No. 1, pp. 34–37.
  11. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 2011, Vol. 137, No. 656, pp. 553–597.
  12. Fu G., Polar lows: Intense cyclones in winter, Qindao: China, 2000. 219 p.
  13. Harold J.M., Bigg G.R., Turner J., Mesocyclone activity over the North-East Atlantic. Part 1: Vortex distribution and variability, International Journal of Climatology, 1999, Vol. 19, No. 11, pp. 1187–1204.
  14. Ninomiya K., Features of the polar air outbreak and the energy balance in the transformed air-mass observed over the Japan Sea, J. Meteor. Soc. of Japan, 2006, Vol. 84, No. 3, pp. 529–542.
  15. Overland J.E., Wang M., Large scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice, Tellus A, 2010, Vol. 62, No. 1, pp. 1–9.
  16. Rasmussen E.A., Turner J., Polar lows: mesoscale weather systems in the polar regions, Cambridge: Cambr. Univ. Press, 2003, 612 p.
  17. Rojo M., Claud C., Mallet P.-E., Noer G., Carleton A.M., Vicomte M., Polar low tracks over the Nordic Seas: a 14-winter climatic analysis, Tellus A, 2015, Vol. 67, 24660.
  18. Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuang H.-Y., Juang H.-M.H., Sela J., Iredell M., Treadon R., Kleist D., van Delst P., Keyser D., Derber John, Ek M., Meng J., Wei H., Yang R., Lord S., Van Den Dool H., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J.-K., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou Sh., Higgins W., Zou Ch.-Zh., Liu Q., Chen Y., Han Yo., Cucurull L., Reynolds R.W., Rutledge G., Goldberg M., The NCEP Climate Forecast System Reanalysis, Bull. Am. Meteorol. Soc., 2010, Vol. 91, No. 8, pp. 1015–1057.
  19. Yanase W., Niino H., Watanabe S.-ichi I., Hodges K., Zahn M., Spengler T., Gurvich I., Climatology of Polar Lows over the Sea of Japan Using the JRA-55 Reanalysis, Journal of Climate, 2016, Vol. 29, No. 2, pp. 419–437.
  20. Zabolotskikh E., Mitnik L., Chapron B., GCOMW1 AMSR2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic, Rem. Sens. Environ., 2014, Vol. 147, pp. 89–98.
  21. Zahn M., von Storch H., Investigation of Past and Future Polar Low Frequency in the North Atlantic, In Extreme Events and Natural Hazards: The Complexity Perspective, A.S. Sharma, A. Bunde, V.P. Dimri, D.N. Baker (Eds.), Geophys. Monogr., Ser. 196, Amer. Geophys. Union, 2013, pp. 99–110.