Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 291-303
Land surface, land air and effective temperature estimation for territories of Southern European Russia based on satellite data
E.V. Volkova
1 , S.A. Uspensky
1 1 State Research Centre of Space Hydrometeorology "Planeta", Moscow, Russia
Accepted: 27.07.2016
DOI: 10.21046/2070-7401-2016-13-5-291-303
An automated technique has been developed for land surface (Ts), land air (Ta) and effective (Te) temperatures estimation for territories of Southern European Russia based on AVHRR/NOAA and SEVIRI/Meteosat-10 data. The computationally effective algorithm is based on Complex Threshold Method for cloud and cloud properties detection (Volkova, 2013, Volkova, Uspensky, 2010). It utilizes cloud clear measurements in channels 11 and 12 m. Two approaches have been discussed: “climate” and “operational”. For the “climate” approach the coefficients for predictors T11, (T11 -T12) and (T11 -T12)2 are calculated for each month with ground-based in-situ data of Ta and Ts (twice a day, i.e. day and night for AVHRR data and for each measurement in case SEVIRI data is used). The drawbacks here are that we need a synchronous archive of ground-based and satellite measurements, and also that it is only possible to update the coefficients at the end of each period (one month). In the “operational” approach it is suggested to use dynamic coefficients instead, those empirically depending on the height of the sun (h0) and day number of the year (dat). Some minor accuracy decrease in temperature estimates is observed here, if compared to the “climate” approach. It is shown that biggest biases are observed under some of the following conditions: at the end of the winter – the beginning of the spring (while the snow cover is still present but thawing); extremely cold winter nights (satellite-based estimates are much higher than ground-based measurements); hot summer afternoons (local overheating effects on the surface causes satellite estimates to be lower than the temperatures measuredin-situ). While the scanning radiometers MSU-MR (Meteor-M series satellites) and MSU-GS (Electro-L series satellites) are in a way similar to the AVHRR and SEVIRI instruments respectively, it could be possible to use the same approach and adjust the developed technique for Ts, Ta and Te estimates to use MSU-MR and MSU-GS data.
Keywords: SEVIRI, Meteosat-10, AVHRR, NOAA, land air temperature, effective temperature, land surface temperature
Full textReferences:
- Volkova E.V., Otsenki parametrov oblachnogo pokrova, osadkov i opasnyh yavlenii pogody po dannym radiometra AVHRR s MISZ seriii NOAA kruglosutochno v avtomaticheskom rezhime (Automatic estimation of cloud cover and precipitation parameters obtained by AVHRR NOAA for day and night conditions), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 66–74.
- Volkova E.V., Uspenskii A.B., Otsenki parametrov oblachnogo pokrova po dannym geostatsionarnogo MISZ Meteosat-9 kruglosutochno v avtomaticheskom rezhime (Day and night automatic estimation of cloud cover parameters using Meteosat-9 data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 16–22.
- Volkova E.V., Uspenskii A.B., Otsenki parametrov oblachnogo pokrova i osadkov po dannym skaniruyushchih radiometrov polyarno-orbital’nyh i geostatsionarnyh meteosputnikov (Detection and assessment of cloud cover and precipitation parameters using data from scanning radiometers of polar-orbiting and geostationary meteorological satellites), Issledovanie Zemli iz kosmosa, 2015, No. 5, pp. 30–43.
- Muzylev E.L., Uspenskii A.B., Startseva Z.P., Volkova E.V., Kuharskii A.V., Uspenskii S.A., Modelirovanie vodnogo rezhima territorii krupnogo sel’skohozyaistvennogo regiona s ispol’zovaniem dannyh izmerenii geostatsionarnyh meteorologicheskih sputnikov (Simulation of the water regime of a vast agricultural region territory utilizing measurement data from geostationary meteorological satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 53–65.
- Solovyov V.I., Uspenskii S.A., Monitoring temperatury poverhnosti sushi po dannym geostatsionarnyh meteorologicheskih sputnikov novogo pokoleniya (Monitoring of the land surface temperature using geostationary meteorological satellite data), Issledovanie Zemli iz kosmosa, 2009, No. 3, pp. 79–89.
- Lavanant L., MAIA AVHRR cloud mask and classification. Scientific and validation document. Meteo-France. MF/DP/CMS/R&D/MAIA3, November 7, 2002. 37 p.
- Sun Y.J., Wang J.-F., Zhang R.-H., Gillies R.R., Xue Y., Bo Y.-C., Air temperature retrieval from remote sensing data based on thermodynamics, Theoret. and Appl. Climatology, 2005, Vol. 30 (1), pp. 37–48.
- LSA SAF. Product user manual. Land Surface Temperature (LST), SAF/LAND/IM/PUM_LST/2.5, Issue 2.5, 24/09/2010, 49 p.