ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 79-90

On identification of mesoscale eddies from satellite altimetry based on the area in the NW Pacific

T.V. Belonenko 1 , P.V. Sholeninova 1 
1 Saint-Petersburg State University, Saint-Petersburg, Russia
Accepted: 28.07.2016
DOI: 10.21046/2070-7401-2016-13-5-79-90
We considered three methods that are traditionally utilized to identify, by using of satellite data, synoptic eddies. A comparison is carried out on the example of a water area located in the NW Pacific. 1) Sea level anomalies, 2) relative vorticity, and 3) Okubo−Weiss parameters are mapped based on satellite altimetry data. It has been revealed that the distribution of these three differs significantly in number, size, and allocation of isolated irregularities that are usually identified as mesoscale eddies. Heterogeneities that are identified using the relative vorticity have smaller spatial scales compared with ones allocated in the sea level anomalies. Only distribution of sea level anomalies or relative vorticity can give a false picture of the vortices. Heterogeneities allocated in these fields are not synonymous with vortices since Okubo−Weiss parameter has positive values for them. We demonstrated that researchers often make erroneous interpretation of the altimetry data, finding eddies where they do not really exist. Formation of various heterogeneities in the sea level anomalies as well as in the relative vorticity could be influenced by other forces, especially by westward propagating planetary waves (low-frequency Rossby waves) and by their interaction with sea currents.
Keywords: altimetry, SLA, sea level, relative vorticity, Okubo-Weiss parameter, the Pacific Ocean, mesoscale eddies, Rossby waves
Full text


  1. Belonenko T.V., Zaharchuk E.A., Fuks V.R., Volny ili vihri? (Waves or eddies?), Vestnik SPbGU (Bulletin of St. Petersburg State University), 1998, Ser. 7, V. 3, No. 21, pp. 37–44.
  2. Belonenko T.V., Zaharchuk E.A., Fuks V.R., Gradientno-vihrevye volny v okeane (Planetary waves in the ocean), 2004, Publishing house Saint Petersburg State University, 215 p.
  3. Belonenko T.V., Koldunov A.V., Koldunov V.V., May R.I., Rubchenya A.V., Atlas izmenchivosti urovnya Severo-zapadnoj chasti Tihogo okeana (Atlas of sea level variability in the NW Pacific), Saint Petersburg, 2011, 304 p.
  4. Kamenkovich V.M., Koshljakov M.N., Monin A.S., Sinopticheskie vihri v okeane (Mesoscale eddies in the ocean), Leningrad: Gidrometeoizdat, 1987, 511 p.
  5. Konjaev K.V., Sabinin K.D., Volny vnutri okeana (Waves in the ocean), St. Petersburg, Gidrometeoizdat, 1992, 271 p.
  6. Bracco A., LaCasce J., Pasquero C., Provenzale A., The velocity distribution of barotropic turbulence, Physics of Fluids, 2000, V. 12, Issue 10, pp. 2478–2488, DOI: 10.1063/1.1288517.
  7. Chaigneau, A., Eldin G., Dewitte B., Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007), Prog. Oceanogr., 2009, 83, pp.117–123.
  8. Charria G., Mélin F., Dadou I., Radenac M.-H., Garçon V., Rossby wave and ocean color: The cells uplifting hypothesis in the South Atlantic Subtropical Convergence Zone, Geophysical Research Letters, 2003, V. 30, No. 3.
  9. Chelton D.B., Schlax M.G., Samelson R.M., de Szoeke R.A., Global observations of large oceanic eddies, Geophysical Research Letters, 2007, V. 34, No. 15.
  10. Chelton D.B., Gaube P., Schlax M.G., Early J.J., Samelson R.M., The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll, Science, 2011, V. 334, No. 6054, pp. 328–332.
  11. Cheng Y.H., Ho C.-R. 1, Zheng Q., Kuo N.-J., Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry, Remote Sensing, 2014, V. 6, No. 6, pp. 5164–5183.
  12. Fu L.L., Le Traon P-Y., Satellite altimetry and ocean dynamics, Comptes Rendus Geosciences, 2006, V. 338, Issues 14–15, pp. 1063–1076.
  13. Henson S.A., Thomas A.C., A census of oceanic anticyclonic eddies in the Gulf of Alaska, Deep Sea Res., Part I., 2008, 55, pp. 163–176.
  14. Isern-Fontanet J., García-Ladona E., Font J., Identification of marine eddies from altimetric maps, Journal of Atmospheric and Oceanic Technology, 2003, V. 20, No. 5, pp. 772–-778.
  15. Kurian J., Colas F., Capet X., McWilliams J.C., Chelton D.B., Eddy properties in the California current system, Journal of Geophysical Research: Oceans, 2011, V. 116, No. C8.
  16. Morrow R., Birol F., Griffin D., Sudre J., Divergent pathways of cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 2004, 31, L24311. DOI: 10.1029/2004GL020974.
  17. Okubo A., Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep Sea Res., Oceanogr. Abstr., 1970, 17, pp. 445–454.
  18. Pasquero C., Provenzale A., Babiano A., Parameterization of dispersion in two-dimensional turbulence, Journal of Fluid Mechanics, 2001, V. 439, pp. 279–303.
  19. Samelson R.M., Wiggins S., Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach, 2006, Springer, New York, 147 p.
  20. Stegmann P.M., Schwing F., Demographics of mesoscale eddies in the California Current, Geophys. Res. Lett., 2007, 34, L14602. DOI:10.1029/2007GL029504.
  21. Weiss J., The dynamics of enstrophy transfer in two dimensional hydrodynamics, Physica D., 1991, 48 (2–3), pp. 273–294.