ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 238-248

Interannual variability in cold-air outbreak characteristics over the Sea of Japan

M.K. Pichugin 1 , D.G. Chechin 2 
1 V.I. Il’ichev Pacific Oceanological Institute FEB RAS , Vladivostok, Russia
2 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
Accepted: 22.09.2016
DOI: 10.21046/2070-7401-2016-13-5-238-248
Interannual variability of the cold-air outbreak (CAO) activity over the Sea of Japan (JS) is analyzed using satellite remote sensing and NCEP-CFSR high-resolution reanalysis data set for the period of 1979–2016. The criteria for quantitative definition of CAO are proposed. They are based on satellite microwave passive and active measurements of near sea surface vector wind and visible/infrared images of clouds for 16 cold seasons (Nov.–Mar.) in 2000–2016. Analysis of CAO characteristics reveals that duration (D) of 36% of the events is less than a 24-hour period (D < 1 day). A significant part of them is accompanied by a storm wind (≥ 20 m/s) at the stage of maximum development enhancing turbulent air-sea fluxes. A statistically significant correlations between interannual variations of the number of CAO events and of the ocean-atmosphere system parameters (near surface air temperature (Ta) and the total (latent + sensible) turbulent air-sea heat flux) were found. Over the continental part of the Far East, the Ta was found to have a strong inverse correlation of -0.86 with the number of CAOs in the area with the center coordinates 47.5°N, 135.5°E. Since Ta in the area varies with period near to 10 years, we hypothesize that CAO activity fluctuation over the Sea of Japan is close to decadal.
Keywords: cold-air outbreak, Sea of Japan, remote sensing, decadal variability, indication, interannual variability, air temperature, heat flux
Full text

References:

  1. Pichugin M.K., Mitnik L.M., Kholodnye vtorzheniya nad Beringovym morem: analiz po dannym sputnikovykh mikrovolnovykh i opticheskikh izmereniy, radiozondirovaniya atmosfery i okeanicheskikh buev (Cold-air outbreaks over the Bering Sea: Satellite multisensor analysis), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 6, No. 2, pp. 172–179.
  2. Pichugin M.K., Ponomarev V.I., Izmenchivost' potokov yavnogo i skrytogo tepla v severo-zapadnoy chasti Yaponskogo morya v kholodnyy period goda (Variability of sensible and latent heat fluxes over the northwest part of the Sea of Japan in cold season), Vestnik DVO RAN, 2013, No. 6, pp. 22–29.
  3. Pokhil A.E., Ob identifikatsii zon shtormovogo volneniya i shtilya v Tikhom okeane po sputnikovym snimkam oblachnosti (On the identification of areas of storm waves and calm in the Pacific Ocean by satellite images of clouds), Meteorologiya i Gidrologiya, 1985, No. 12, pp. 68–76.
  4. Mitnik L.M., Viktorova S.V., Radiolokatsiya poverkhnosti Zemli iz Kosmosa (The radar sensing of the Earth from space), St. Petersburg: Gidrometeoizdat, 1990, 200 p.
  5. Chechin D.G., Pichugin M.K., Cold-air outbreaks over the ocean at high latitudes and associated mesoscale atmospheric circulations: Problems of numerical modelling, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 9, pp. 1034–1050.
  6. Compo G., Kiladis G.N., Webster P.J., The horizontal and vertical structure of East Asian winter monsoon pressure surges, Q. J. R. Meteorol. Soc., 1999, Vol. 125, No. 553, pp. 29–54.
  7. Cui Y., Senjyu T., Interdecadal oscillations in the Japan Sea proper water related to the arctic oscillation, Journal of Oceanography, 2010, Vol. 66, No. 3, pp. 337.
  8. Dorman C.E., Beardsley R.C., Dashko N.A., Friehe C.A., Kheilf D., Cho K., Limeburner R., Varlamov S.M., Winter marine atmospheric conditions over the Japan Sea, J. Geophys. Res., 2004, Vol. 109, No. C12, p. C12011.
  9. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P.M. (eds.). Cambridge University Press, 2013, 1552 p.
  10. Isobe A., Beardsley R.C., Atmosphere and Marginal-Sea Interaction Leading to an Interannual Variation in Cold-Air Outbreak Activity over the Japan Sea, Journal of Climate, 2007, Vol. 20, No. 23, p. 5707.
  11. Gong D.-Y., Wang S.-W., Zhu J.-H., East Asian winter monsoon and Arctic Oscillation, Geophys. Res. Lett., 2001, Vol. 28, No. 10, pp. 2073–2076.
  12. Jensen T.G., Campbell T.J., Allard R.A., Small R.J., Smith T.A., Turbulent heat fluxes during an intense cold-air outbreak over the Kuroshio Extension Region: Results from a high-resolution coupled atmosphere-ocean model, Ocean Dynamics, 2011, Vol. 61, pp. 657–674.
  13. Jhun J.-G., Lee E.-J., A new east Asian Winter Monsoon Index and associated characteristics of the winter monsoon, J. Clim., 2004, Vol. 17, No. 4, pp. 711–726.
  14. Kawamura H., Wu P., Formation mechanism of Japan Sea Proper Water in the flux center off Vladivostok, J. Geophys. Res., 1998, Vol. 103, No. C10, pp. 21611–21622.
  15. Kolstad E.W., Bracegirdle T.J., Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere, Climate Dynamics, 2008, Vol. 30, No. 7, pp. 871–885.
  16. Mitnik L.M., Mitnik M.L., Microwave characteristics of organized mesoscale convection over the ocean, Proc. 10th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Microrad08, Florence, Italy, 11–14 March 2008, IEEE Catalog Number CFP0892D (softbound) CFP0892D-CDR (CD ROM).
  17. Mitnik L.M., Gurvich I.A., Pichugin M.K., Satellite sensing of intense winter mesocyclones over the Japan Sea, Proc. IGARSS, 2011, Vancouver, 25–29 July 2011, pp. 2345–2348.
  18. Mourad P.D., Walter B.A., Viewing a cold air outbreak using satellite-based synthetic aperture radar and advanced very high resolution radiometer imagery, J. Geophys. Res., 1996, Vol. 101, pp. 16391–16400.
  19. Nagata M., Ikawa M., Yoshizumi S., Yoshida T., On the formation of a convergent cloud band over the Japan Sea in winter: Numerical experiments, J. Meteor. Soc. Jpn., 1986, Vol. 64, pp. 841–855.
  20. Onitsuka G., Yanagi T., Yoon J.-H., A numerical study on nutrient sources in the surface layer of the Japan Sea using a coupled physical-ecosystem model, J. Geophys. Res., 2007, Vol. 112, No. C05, p. C05042.
  21. Park K.-A., Ullman D.S., Kim K., Chung J.-Y., Kim K.-R., Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea, Deep-sea Research Part I, 2007, Vol. 54, pp. 453–470.
  22. Park T.-W., Ho C.-H., Yang S., Relationship between the Arctic oscillation and the cold surges over East Asia, J. Clim., 2011, Vol. 24, No. 1, pp. 68–83.
  23. Saha S. Moorthi S., Pan H.L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.T., Chuang H.Y., Juang H.-M.H., Sela J., Iredell M., Treadon R., Kleist D., Delst P.V., Keyser D., Derber J., Ek M., Meng J., Wei H., Yang R., Lord S., Dool H.V.D., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J.K., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou S., Higgins W., Zou C.Z., Liu Q., Chen Y., Han Y., Cucurull L., Reynolds R.W., Rutledge G., Goldberg M., The NCEP Climate Forecast System Reanalysis, Bull. Am. Meteorol. Soc., 2010, V. 91, No. 8, pp. 1015–1057.
  24. Seung Y.H., Yoon J.H., Some features of winter convection in the Japan Sea, J. Oceanogr., 1995, Vol. 5, No. 1, pp. 61–73.
  25. Talley L.D., Lobanov V.B., Ponomarev V.I., Salyuk A., Tishchenko P., Zhabin I., Riser S., Deep convection and brine rejection in the Japan Sea, Geophys. Res. Lett., 2003, Vol. 30, pp. 8.1–8.4.
  26. Thompson D.W.J., Wallace J.M., The Arctic oscillation signature in the wintertime geopotential height and temperature fields, Geophys. Res. Lett., 1998, Vol. 25, No. 9, pp. 1297–1300.
  27. Woo S.-H., Kim B.-M., Jeong J.-H., Kim S.-J., Lim G.-H., Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979–2011), J. Geophys. Res., 2012, Vol. 117, No. D18, p. D18117.
  28. Wu B., Wang J., Winter Arctic Oscillation, Siberian High and East Asian winter monsoon, Geophys. Res. Lett., 2002, Vol. 29, No. 19, p. 1897.
  29. Yamada K., Ishizaka J., Yoo S., Kim H., Chiba S., Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES), Prog. Oceanogr., 2004, Vol. 61, No. 2–4, pp. 193–211.
  30. Yanase W., Niino H., Watanabe S.I., Hodges K., Zahn M., Spengler T., Gurvich I.A., Climatology of Polar Lows over the Sea of Japan Using the JRA-55 Reanalysis, Journal of Climate, 2016, Vol. 29, No. 2, pp. 00419–00437.