ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 45-59

Laboratory simulation of back-scattering of microwaves at the sea surface at strong and hurricane winds

Yu.I. Troitskaya 1, 2 , V.I. Abramov 3 , A.V. Ermoshkin 1 , E.M. Zuikova 1 , V.I. Kazakov 1 , D.A. Sergeev 1, 2 , A.A. Kandaurov 1, 2 , O.S. Ermakova 1, 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
3 Radiophysical Research Institute, Nizhni Novgorod, Russia
Accepted: 24.08.2016
DOI: 10.21046/2070-7401-2016-13-16-45-59
Laboratory experiments directed to investigation of dependencies of the X-band normalized co-polarized and de-polarized radar cross-section on wind speed (U10) and incident angle (θ) are presented. Microwave measurements were accompanied by the measurements of air-flow (friction velocity) and wave field parameters (spectra and slope probability density function). Parameters of air-flow velocity and surface wind waves were measured simultaneously. It was shown that both co-polarized and de-polarized radar return depend on incidence angle; although the de-polarized return is less sensitive. Analysis of the Doppler spectra of the radar backscatter enabled us to conclude that the radar return is formed by resonant scatters moving with the velocity exceeding in 20% the phase velocity of the energy containing surface waves. Basing on the measurements, the X-band and C-band geophysical model functions (GMF) were derived for U10 =10 - 40 m/s and θ = 30o – 60o.
Keywords: scattering of radiowaves on the sea surface, co-polarized and depolarized radar return, Doppler spectrum, storm, hurricane, microwave remote sensing, polarization, boundary layers of the atmosphere and ocean, surface waves breaking
Full text


  1. Donelan, M.A., Drennan W.M., Magnusson A.K., Non-stationary analysis of the directional properties of propagating waves, J. Phys. Oceanogr., 1996, Vol. 26, pp. 1901–1914.
  2. Donnelly W.J., Carswell J.R., McIntosh R.E., Chang P.S., Wilkerson J., Marks F., Black P.G., Revised ocean backscatter models at C and Ku band under high-wind conditions, J. Geophys. Res., 1999, Vol. 104 (C5), pp. 11485–11497.
  3. Hersbach H., Comparison of C-band scatterometer CMOD5.N equivalent neural winds with ECMWF, J. Atmos. Oceanic Technol., 2010, Vol. 27, pp. 721–736.
  4. Hersbach H., Stoffelen A., de Haan S., An improved C-band scatterometer ocean geophysical model function: CMOD5, J. Geophys. Res., 2007, Vol. 112 (C3), C03006.
  5. Hwang P.A., Zhang B., Toporkov J.V., Perrie W., Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval, J. Geophys. Res., 2010. DOI:10.1029/2009JC005995.
  6. Fois F., Hoogeboom P., Le Chevalier F., Stoffelen A. Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds, IEEE Transactions on Geoscience and Remote Sensing, 2015, Vol. 53, No. 9, pp. 5009–5020.
  7. Monahan E.C., Muircheartaigh I., Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed, J. Phys. Oceanogr., 1980, Vol. 10, pp. 2094–2099.
  8. Reul N., Chapron B., A model of sea-foam thickness distribution for passive microwave remote sensing applications, Journal of geophysical research, 2003, Vol. 108 (C10). 3321.
  9. Troitskaya Yu.I, Abramov V., Ermoshkin A., Zuikova E., Laboratory modelling of cross-polarized radar return at severe wind conditions, Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 2014, pp. 3894–3897.
  10. Troitskaya Yu.I., Sergeev D.A., Kandaurov A.A., Baidakov G.A., Vdovin M.A., Kazakov V.I., Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions, J. Geophys. Res., 2012, Vol. 117, C00J21.
  11. Vachon P.W., Wolfe J., C-band cross-polarization wind speed retrieval, IEEE Geosci. Remote Sens. Lett., 2011, Vol. 8, pp. 456–459.
  12. Valenzuela G.R., Theories for the interaction of electromagnetic and oceanic waves – A review, Boundary-Layer Meteorology, 1978, Vol. 13, pp. 61–85.
  13. van Zadelhoff G.-J., Stoffelen A., Vachon P.W., Wolfe J., Horstmann J., Belmonte-Rivas M., Scatterometer hurricane wind speed retrievals using cross polarization, Atmos. Meas. Tech. Discuss., 2013, Vol. 6, pp. 7945–7984.
  14. Zhang B., Perrie W., Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes, Bull. Amer. Meteor. Soc., 2012, Vol. 93, pp. 531–541.
  15. Zhang B., Perrie W., He Y., Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model, J. Geophys. Res., 2011, Vol. 116, C08008. DOI:10.1029/2010JC006522.
  16. Zhang B., Perrie W., Zhang J.A., Uhlhorn E.W., He Y., High-Resolution Hurricane Vector Winds from C-Band Dual-Polarization SAR Observations, J. Atmos. Oceanic Technol., 2014, Vol. 31, pp. 272–286.