ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 168-191

Evaluation of the quality of polar low reconstruction using reanalysis and regional climate modelling

M.I. Varentsov 1, 2 , P.S. Verezemskaya 3, 4 , E.V. Zabolotskikh 5 , I.A. Repina 6, 7 
1 A.M. Obukhov Institute of Atmosphere Physics RAS, Moscow, Russia
2 M.V. Lomonosov Moscow State University, Moscow, Russia
3 M.V. Lomonosov Moscow State University, Research Computing Center, Moscow, Russia
4 P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia
5 Russian State Hydrometeorological University, Saint Petersburg, Russia
6 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
7 Space Research Institute RAS, Moscow, Russia
Accepted: 25.08.2016
DOI: 10.21046/2070-7401-2016-13-8-168-191
Polar mesoscale cyclones, also known as polar lows, play an important role in the climate system of the Polar Regions. However, identification, analysis and investigation of polar lows based on standard synoptic information and global reanalysis products is complicated by relatively small size and short lifetime of such vortexes. In this paper we evaluate the quality of polar lows representation by modern reanalyses and regional climate model in comparison with the data of satellite observations in different spectral ranges. NCEP-NCAR, ERA-Interim, MERRA global reanalyses, regional ASR reanalysis and regional climate model COSMO-CLM are used. Results of comparison show that spatial resolution of modern reanalyses is insufficient for adequate representation of polar lows. The best correspondence with satellite data was shown by results of dynamic downscaling of reanalysis data to higher resolution by COSMO-CLM model with application of spectral nudging technique, although in certain moments the model could deviate from the observational data. ASR reached the best results among reanalyses. However, it is also the result of global reanalysis downscaling by the regional atmospheric model. Therefore, adequate identification of polar lows, their tracking and assessment of their parameters require simultaneous usage of surface and satellite observations, assimilated to reanalysis data, and the results of regional modelling with higher spatial resolution.
Keywords: polar low, regional climate modelling, downscaling, reanalysis, multispectral remote sensing
Full text

References:

  1. Verezemskaya P.S., Stepanenko V.M., Chislennoe modelirovanie intensivnyh poliarnyh mezomasshtabnyh cyklonov modeliu (Numeric modiling of intensive Polar Low using of WRF model), Proceedings of ENVIROMIS-2014, Tomsk, 2014, pp. 67–71.
  2. Verezemskaya P.S., Baraniuk A., Stepanenko V.M., Struktura i evolutsia poliarnogo mesotsiklona v Karskom more po dannym chislennogo modelirovania WRF (Structure and evolution of polar low in Kara sea by WRF numerical simulation), Proceedings of CITES–2015, Tomsk, 2015, pp. 28–29.
  3. Gurvich I.A., Mitnik L.M., Mitnik M.L., Mezomsshtabny tsiklogenez nad dalnevostochnymi moriami: issledovanie na osnove sputnikovyh mikrovolnovyh radiometricheskih I radiolokatsionnyh izmereniy (Mesoscale cyclogenesis over the Far Eastern seas: study based on satellite microwave radiometric and radar measurements), Issledovanie Zemli iz kosmosa, 2008, No. 5, pp. 58–73.
  4. Zabolotskikh E.V., Mitnik L.M., Bobylev L.P., Sravnitelnaia otsenka suschestvuuschih I perspektivnyh metodov issledovania v oblasti monitoring I prognozirovania meso-maschtabnyh tsiclonicheskih vihrey, vkluchaia poliarnye tsiclony (Comparative review of existing and perspective methods of the investigation of mesoscale lows including polar lows), Sovremennye problemy distantsionnogo zondirovania Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 23–29.
  5. Zabolotskikh E.V., Gurvich I.A., Chapron B., Novye raiony rasprostranenia poliarnykh tciklonov v Arctike kak rezultat sokraschenia ploschadi ledianogo pokrova (New areas of polar lows over the arctic as a result of sea ice extent decrease), Issledovanie Zemli iz kosmosa, 2015, No. 2, pp. 1–14.
  6. Zaripov R.B., Obzor sovremennykh metodov prostranstvennoi detalizatsii meteorologicheskih poley (A review of modern methods for special detailing of meteorological fields), Dinamika okruzhaiuschei sredy i globalnye izmenenia klimata, 2010, Vol. 1, No. 1, pp. 1–12.
  7. Ivanov V.V., Alexeev V.A., Alexeeva T.A., Koldunov N.V., Repina I.A., Smirnov A.V., Arkticheskiy pokrov stanovitsia sezonnym? (Does Arctic Ocean Ice Cover Become Seasonal?), Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  8. Lutsenko E.I., Lagun V.E., Poliarnye mesomasshtabnye tciklony v atmosphere nad Barentsevym i Karskim moriamy (Polar meso-scale cyclones in the atmosphere over Barents and Kara seas), Problemy Arktiki i Antarktiki, 2013, No. 2(96), pp. 76–89.
  9. Mokhov I.I., Akperov M.G., Lagun V.E., Lutsenko E.I., Intense arctic mesocyclones, Izvestiya, Atmospheric and Oceanic Physics, 2007, Vol. 43(3), pp. 259–265.
  10. Blechschmidt A.M., A 2-year climatology of polar low events over the Nordic Seas from satellite remote sensing, Geophys. Res. Lett., 2008, Vol. 35, No. 9. DOI:10.1029/2008GL033706.
  11. Böhm U., Kücken M., Ahrens W., Block A., Hauffe D., Keuler K., Rockel B., Will A., CLM – the climate version of LM: Brief description and long-term applications, COSMO Newsletter, 2006, Vol. 6, pp. 225–235.
  12. Bromwich D.H., Hines K.M., Bai L.-S., Development and testing of Polar WRF: 2. Arctic Ocean, J. Geophys. Res., 2009, Vol. 114. D08122, DOI:10.1029/2008JD010300.
  13. Businger S., The synoptic climatology of polar low outbreaks, Tellus A, 1985, Vol. 37, No. 5, pp. 419–432.
  14. Businger S., The synoptic climatology of polar-low out-breaks over the Gulf of Alaska and the Bering Sea, Tellus, 1987, Vol. 39A, pp. 307–325. DOI:10.1111/j.1600-0870.1987.tb00310.x.
  15. Businger S., Baik J.-J., An arctic hurricane over the Bering Sea, Mon. Wea. Rev., 1991, Vol. 119, pp. 2293–2322. DOI:10.1175/1520-0493(1991)119,2293: AAHOTB.2.0.CO;2.
  16. Chen F., Geyer B., Zahn M., von Storch H., Toward a Multi-Decadal Climatology of North Pacific Polar Lows Employing Dynamical Downscaling, Terr. Atmos. Ocean. Sci., 2012, Vol. 23, No. 3, pp. 291–301. DOI: 10.3319/TAO.2011.11.02.01(A).
  17. Condron A., Bigg G. R., Renfrew I.A., Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery, Mon. Wea. Rev., 2006, Vol. 134, No. 5, pp. 1518–1533.
  18. Condron A., Renfrew I.A., The impact of polar mesoscale storms on northeast Atlantic Ocean circulation, Nature Geoscience, 2013, Vol. 6, No. 1, pp. 34–37.
  19. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quart. J. R. Meteorol. Soc., 2011, Vol. 137, No. 656, pp. 553–597. DOI:10.1002/qj.828.
  20. Duncan C.N., A numerical investigation of polar lows, Quart. J. R. Meteorol. Soc., 1977, Vol. 103, pp. 255–267.
  21. Ebert E.E., Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework, Meteorological applications, 2008, Vol. 15, No. 1, pp. 51–64.
  22. Feser F., Barcikowska M., The influence of spectral nudging on typhoon formation in regional climate models, Environmental Research Letters, 2012, Vol. 7, No. 1. pp. 14–24.
  23. Figa-Saldaña J., Wilson J.J., Attema E., Gelsthorpe R., Drinkwater M.R., Stoffelen A., The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers, Canadian Journal of Remote Sensing, 2002, Vol. 28, No. 3, pp. 404–412.
  24. Hines K.M., Bromwich D.H., Development and testing of Polar WRF. Part I. Greenland Ice Sheet meteorology, Mon. Weather Rev., 2008, Vol. 136, pp. 1971–1989. DOI:10.1175/2007MWR2112.1.
  25. Hines K.M., Bromwich D.H., Bai L.-S., Barlage M., Slater A.G., Development and testing of Polar WRF. Part III. Arctic land, J. Clim., 2011, Vol. 24, pp. 26–48. DOI:10.1175/2010JCLI3460.1.
  26. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D., The NCEP/NCAR 40-year reanalysis project, Bulletin of the American meteorological Society, 1996, Vol. 77, No. 3, pp. 437–471.
  27. Kistler R., Collins W., Saha S., White G., Woollen J., Kalnay E., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., van den Dool H., Jenne R., Fiorino M., The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bulletin of the American Meteorological society, 2001, Vol. 82, No. 2, pp. 247–267.
  28. Laffineur T., Claud C., Chaboureau J.P., Noer G., Polar lows over the Nordic Seas: Improved representation in ERA-Interim compared to ERA-40 and the impact on downscaled simulations, Mon. Wea. Rev., 2014. Vol. 142. No. 6. P. 2271–2289.
  29. Mailhot J., Hanley D., Bilodeau B., Hertzman O., A numerical case study of a polar low in the Labrador Sea, Tellus, 1996, Vol. 48A, pp. 383–402. DOI:10.1034/j.1600-0870.1996.t01-2-00003.x.
  30. Noer G., Saetra Ø., Lien T., Gusdal Y., A climatological study of polar lows in the Nordic Seas, Quarterly Journal of the Royal Meteorological Society, 2011, Vol. 137, No. 660, pp. 1762–1772.
  31. Rasmussen E., A case study of a polar low development over the Barents Sea, Tellus, 1995, Vol. 37A, pp. 407–418. DOI:10.1111/j.1600-0870.1985.tb00440.x.
  32. Rasmussen E.A., Turner J., Polar lows, Cambridge, Cambridge University press, 2003.
  33. Rienecker M.M, Suarez M.J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M.G., Schubert S.D., Takacs L., Kim G., Bloom S., Chen J., Collins D., Conaty A., da Silva A., Gu W., Joiner J., Koster R.D., Lucchesi R., Molod A., Owens T., Pawson S., Pegion P., Redder C.R., Reichle R., Robertson F.R., Ruddick A.G., Sienkiewicz M., Woollen J., MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 2011, Vol. 24, pp. 3624–3648.
  34. von Storch H., Langenberg H., Feser F., A spectral nudging technique for dynamical downscaling purposes, Mon. Wea. Rev., 2000, Vol. 128, No. 10, pp. 3664–3673.
  35. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V., “Lomonosov”: Supercomputing at Moscow State University, Contemporary high performance computing: from petascale toward exascale, 2013, pp. 283–307.
  36. Tsai W.Y., Spencer M., Wu C., Winn C., Kellogg K., Sea Winds on QuikSCAT: sensor description and mission overview, Proc. International Geoscience and Remote Sensing Symposium (IGARSS 2000), Honolulu, 2000, Vol. 3, pp. 1021–1023.
  37. Turner J., Lachlan-Cope T., Thomas J., A comparison of Arctic and Antarctic mesoscale vortices, J. Geophys. Res., 1993, Vol. 98, pp. 13019–13034.
  38. Wentz F.J., Meissner T., Supplement 1: Algorithm theoretical basis document for AMSR-E ocean algorithms, RSS Technical Report 051707, Santa Rosa, CA, 2007, 6 p.
  39. Wilhelmsen K., Climatological study of gale-producing polar lows near Norway, Tellus, 1985, Vol. 37A, pp. 451–459. DOI:10.1111/j.1600-0870.1985.tb00443.x.
  40. Wilson A.B., Bromwich D.H., Hines K.M., Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. Atmospheric hydrologic cycle, J. Geophys. Res., 2012, Vol. 117, D04107. DOI:10.1029/2011JD016765.
  41. Yanase W., Niino H., Watanabe S.I.I., Hodges K., Zahn M., Spengler T., Gurvich I.A., Climatology of polar lows over the Sea of Japan using the JRA-55 reanalysis, Journal of Climate, 2016, Vol. 29, pp. 419–436. DOI:10.1175/JCLI-D-15-0291.1.
  42. Zahn M., von Storch H., A longterm climatology of North Atlantic polar lows, Geophys. Res.Lett., 2008, Vol. 35, No. 22. DOI:10.1029/2008GL035769.
  43. Zappa G., Shaffrey L., Hodges K., Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-interim reanalysis? Monthly Weather Review, 2014, Vol. 142, No. 8, P. 2596–2608.