ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 204-215

Spatial variations of the ionosphere parameters over the Northern Hemisphere winter jet streams

B.G. Shpynev 1 , M.A. Chernigovskaya 1 , V.I. Kurkin 1 , K.G. Ratovsky 1 , A.Yu. Belinskaya 2 , A.E. Stepanov 3 , V.V. Bychkov 4 , S.A. Grigorieva 5 , V.A. Panchenko 6 , N.A. Korenkova 7 , V.S. Leschenko 7 , J. Mielich 8 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 Geophysical Survey SB RAS, Altay-Sayan Dept., Novosibirsk, Russia
3 Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
4 Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia
5 Institute of Geophysics UB RAS, Yekaterinburg, Russia
6 N.V. Pushkov Institute of Terrestrial Magnetism and Radio Wave Propagation RAS, Moscow, Russia
7 West Department of N.V. Pushkov Institute of Terrestrial Magnetism and Radio Wave Propagation RAS, Kaliningrad, Russia
8 Leibniz Institute for Atmospheric Physics, Kühlungsborn, Germany
Accepted: 27.08.2016
DOI: 10.21046/2070-7401-2016-13-5-204-215
We study the effects of neutral atmosphere dynamics influence on midlatitude and sub-polar ionosphere during the formation and evolution of the winter jet stream at the heights of the stratosphere/lower mesosphere in the Northern Hemisphere during years 2008-2013. To analyze the dynamics of the stratosphere/lower mesosphere jet streams we use the ECMWF Era-Interim reanalysis data. The analysis of the global ionosphere response to the strato-mesospheric dynamics is based on the data of the ionosonde chain located within the latitude range of 50-60 N in the longitudinal sector 0-158 E spaced at 15-20 degrees in longitude and covering the entire Eurasian continent. We reveal the regional features of the F2-layer ionosphere response to the dynamic processes during the developing of winter circumpolar vortex at the strato-mesosphere. As a mechanism of the neutral atmosphere impact to the ionosphere, we consider the uplifting/lowering molecular gas to/from lower thermosphere in active regions of circulations. Irregular variations of the ionosphere parameters can also be caused by wave disturbances of various spatial and temporal scales (including internal gravity waves) propagating in the thermosphere from the lower atmosphere. The source of the mesoscale waves generation at the strato-mesosphere heights is associated with the baroclinic instabilities in the spatially non-uniform, high-speed winter jet stream. We identify the periods of middle-scale wave-like motions in the atmosphere and ionosphere in the autumn-winter period (between November and February) for all years under analysis. Variations of the ionosphere parameters observed at different longitudes of the northern hemisphere significantly depend on the ionosonde position relatively to the winter jet stream zone in the strato-mesosphere. The difference in the critical frequency values for the ionosondes spaced longitudinally by only 15-20 degrees can reach about 1.5-2 MHz, depending on the location of the observation point under the jet stream or outside it.
Keywords: the upper and middle atmosphere, interaction between atmospheric layers, wave disturbances
Full text


  1. Pedlosky J., Geophysical Fluid Dynamics, New York: Springer-Verlag, 1982, 624 p.
  2. Chernigovskaya M.A., Sutyrina E.N., Ratovsky K.G., Meteorologicheskie effekty ionosfernoi vozmushchennosti nad Irkutskom po dannym vertikal'nogo radiozondirovaniya (Meteorological effects of ionospheric disturbances over Irkutsk according to vertical radio sounding data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 264–274.
  3. Shpynev B.G., Pancheva D., Mukhtarov P., Kurkin V.I., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., Stepanov A.E., Otklik ionosfery nad regionom Vostochnoi Sibiri vo vremya vnezapnogo stratosfernogo potepleniya 2009 g. po dannym nazemnogo i sputnikovogo radiozondirovaniya (Ionosphere response over East Siberia during the 2009 Sudden Stratosphere Warming derived from data of ground based and satellite radio sounding), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 153–163.
  4. Abatzoglou J.T., Magnusdottir G. Wave breaking along the stratospheric polar vortex as seen in ERA-40 data, Geophys. Res. Lett., 2007, Vol. 34, L08812. DOI:10.1029/2007GL029509.
  5. Bessarab F.S., Korenkov Yu.N., Klimenko M.V., Klimenko V.V., Karpov I.V., Ratovsky K.G., Chernigovskaya M.A., Shcherbakov A.A., Modeling the effect of Sudden Stratospheric Warming within the thermosphere-ionosphere system, J. Atmos. Sol. Terr. Phys., 2012, Vol. 90–91, pp. 77–85.
  6. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G., Meteorological effects of ionospheric disturbances from vertical radio sounding data, J. Atmos. Sol. Terr. Phys., 2015, Vol. 136, pp. 235–243.
  7. Danilov A.D., Long-term trends of foF2 independent on geomagnetic activity, Ann. Geophys., 2003, Vol. 21, No. 5, pp. 1167–1176.
  8. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M.,, Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q.J.R. Meteorol. Soc., 2011, Vol. 137, pp. 553–597. DOI:10.1002/qj.828.
  9. Gardner C.S, Liu A.Z., Wave-induced transport of atmospheric constituents and its effect on the mesospheric Na layer, J. Geophys. Res., 2010, Vol. 115, pp. D20302. DOI:10.1029/2010JD014140.
  10. Goncharenko L., Chau J.L., Condor P., Coster A., Benkevitch L., Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013, Geophys. Res. Lett., 2013, Vol. 40, pp. 1–5.
  11. Goncharenko L.P., Chau J.L., Liu H.-L., Coster A.J., Unexpected connection between the stratosphere and ionosphere, Geophys. Res. Lett., 2010, Vol. 37, L10101. DOI:10.1029/2010GL043125.
  12. Laštovička J., Forcing of the ionosphere by waves from below, J. Atmos. Sol. Terr. Phys., 2006, Vol. 68, pp. 479–497.
  13. Laštovička J., Global pattern of trends in the upper atmosphere and ionosphere: Recent progress, J. Atmos. Sol. Terr. Phys., 2009, Vol. 71, No. 14–15, pp. 1514–1528.
  14. Liou K., Newell P.T., Anderson B.J., Zanetti L., Meng C.-I., Neutral composition effects on ionospheric storms at middle and low latitudes, J. Geophys. Res., 2005, Vol. 110, pp. A05309. DOI:10.1029/2004JA010840.
  15. Liu H.-L., Richmond A.D., Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity, J. Geophys. Res.: Space Physics, 2013, Vol. 118, pp. 2452–2465.
  16. Matsuno T., A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 1971, Vol. 28, pp. 1479–1494.
  17. Maute A., Richmond A.D., Roble R.G., Sources of low-latitude ionospheric ExB drifts and their variability, J. Geophys. Res., 2012, Vol. 117, A06312. DOI:10.1029/2011JA017502.
  18. Mukhtarov P., Pancheva D., Global ionospheric response to nonmigrating DE3 and DE2 tides forced from below, J. Geophys. Res.: Space Physics (1978-2012), 2011, Vol. 116, A05323. DOI:10.1029/2010JA016099.
  19. Pancheva D., Mukhtarov P. Strong evidence for the tidal control on the longitudinal structure of the ionospheric F-region, Geophys. Res. Lett., 2010, Vol. 37, L14105. DOI:10.1029/2010GL044039.
  20. Pancheva D., Mukhtarov P., Andonov B., Mitchell N.J., Forbes J., Planetary waves observed by TIMED/SABER in coupling the stratosphere-mesosphere-lower thermosphere during the winter of 2003/2004: Part 2 – Altitude and latitude planetary wave structures, J. Atmos. Sol. Terr. Phys., 2009, V. 71, No. 1, pp. 75–87.
  21. Pedatella N.M., Liu H.-L., The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere, J. Geophys. Res.: Space Physics, 2013, Vol. 118, pp. 5333–5347.
  22. Pogoreltsev A.I., Vlasov A.A., Fröhlich K., Jacobi Ch. Planetary waves in coupling the lower and upper atmosphere, J. Atmos. Sol. Terr. Phys., 2007, Vol. 69, pp. 2083–2101. DOI:10.1016/j.jastpp.2007.05.014.
  23. Polyakova A.S.,. Chernigovskaya M.A, Perevalova N.P., Ionospheric effects of sudden stratospheric warmings in eastern Siberia region, J. Atmos. Sol. Terr. Phys., 2014, Vol. 120, pp. 15–23.
  24. Prölss G.W., Werner S., Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophys. Res., 2002, Vol. 107, No. A2, pp. 1016. DOI:10.1029/2001JA900126.
  25. Rishbeth H., F-regon links with the low atmosphere? J. Atmos. Sol. Terr. Phys., 2006, Vol. 68, pp. 469–478.
  26. Shpynev B.G., Churilov S.M., Chernigovskaya M.A., Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere, J. Atmos. Sol. Terr. Phys., 2015, Vol. 136, pp. 201–215.
  27. Shpynev B.G., Kurkin V.I., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., Grigorieva S.A., Stepanov A.E., Bychkov V.V., Pancheva D., Mukhtarov P., High-midlatitude ionosphere response to major stratospheric warming, Earth, Planets and Space, 2015, Vol. 67:18. DOI:10.1186/s40623-015-0187-1.
  28. Vincent R.A., Gravity wave coupling from below: A review, Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, Tokyo: TERRAPUB, 2009, pp. 279–293.
  29. Yiğit E., Medvedev A.S., Internal waves coupling processes in Earth's atmosphere, Adv. Space Res., 2015, Vol. 55, pp. 983–1003.