ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 149-156

The influence of spatial matching on the results of the comparison of integrated water vapor ground-based and satellite measurements

I.A. Berezin 1 , Yu.M. Timofeyev 1 , Ya.A. Virolainen 1 , A.V. Polyakov 1 , N.A. Zaitsev 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 26.08.2016
DOI: 10.21046/2070-7401-2016-13-17-149-156
A great number of satellites monitor integrated water vapor (IWV) – the most important greenhouse gas in the Earth’s atmosphere. We compare measurements of IWV by the satellite AMSU device and the ground-based microwave (MW) RPG-HATPRO radiometer in the vicinity of St. Petersburg (Peterhof) in the period between March 2013 and May 2014. Especially, we analyze the influence of spatial matching of two types of measurements. The minimal differences between ground-based and satellite measurements, both absolute, and relative, are observed at the minimal spatial mismatches (0–90 km). Moreover, the correlation coefficient between the two types of measurements decreases with the increase of spatial differences. The analysis of previous comparisons of IWV satellite MW measurements with independent data shows that the highest agreement of measurements is observed over the water surface. We explain this by the high accuracy of current parameterizations of MW water surface emissivity and the retrieval of its values from satellite measurement data.
Keywords: comparison of remote sensing methods, integrated water vapor, AMSU, RPG-HATPRO
Full text


  1. Kadygrov E.N. Mikrovolnovaya radiometriya atmosfernogo pogranichnogo sloya-metod, apparatura, rezul'taty izmerenii (Microwave radiometry of atmospheric boundary layer – method, device, results), Optika atmosfery i okeana, 2009, Vol. 22, No. 7, pp. 697–704.
  2. Kadygrov E.N., Gorelik A.G., Miller E.A., Nekrasov V.V., Troitskii A.V., Tochilkina T.A., Shaposhnikov A.N.. Rezul'taty monitoringa termodinamicheskogo sostoyaniya troposfery mnogokanal'nym mikrovolnovym radiometricheskim kompleksom (The results of monitoring of thermodynamic state of troposphere by microwave radiometric complex), Optika atmosfery i okeana, 2013, Vol. 26, No. 6, pp. 459–465.
  3. Shchukin G.G., Stepanenko V.D., Obraztsov S.P., Karavaev D.M., Zhukov V.Yu., Rybakov Yu.V. Sostoyanie i perspektivy radiofizicheskikh issledovanii atmosfery i podstilayushchei poverkhnosti (The state of art and perspective of radio-physical study of atmosphere and surface), Trudy GGO, 2009, No. 560, pp. 143–167.
  4. Aires F., Prigent C., Rossow W.B., Rothstein M. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations, J. Geophys. Res., 2001, Vol. 106, No. D14, pp. 14887–14907.
  5. AIRS/AMSU/HSB Version 6 Level 2 Product User Guide, Version 1.1, Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology, 2014, 139 p.
  6. AIRS/AMSU/HSB Version 5 CalVal Status Summary, Version 1.0, Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology, 2007, 17 p.
  7. Bobylev L.P., Zabolotskikh E.V., Mitnik L.M., Mitnik M.L. Atmospheric Water Vapor and Cloud Liquid Water retrieval Over the Arctic Ocean Using Satellite Passive Microwave Sensing, IEEE Transactions on Geoscience and Remote Sensing, 2010, Vol. 48, No. 1, pp. 283–294.
  8. Deeter M.D. A new satellite retrieval method for precipitable water vapor over land and ocean, Geophys. Res. Let., 2007, Vol. 34, pp. L02815.
  9. Du J., Kimball J.S., Jones L.A. Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2, IEEE Transactions on Geoscience and Remote Sensing, 2015, Vol. 53, No. 5, pp. 2520–2531.
  10. Grody N., Zhao J., Fe R. Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit, J. Geophys. Res., 2001, Vol. 106, No. D3, pp. 2943–2953.
  11. Ji D., Shi J. Water Vapor Retrieval Over Cloud Cover Area on Land Using AMSR-E and MODIS, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, Vol. 7, No. 7, pp. 3105–3116.
  12. Monitoring Atmospheric Water Vapour Ground-Based Remote Sensing and In-situ Methods. Series: ISSI Scientific Report Series, Vol. 10, Heidelberg: Springer Verlag, 2013, 326 p.
  13. Rose Th., Czekala H. Accurate Atmospheric Profiling with the RPG-HATPRO Humidity – and Temperature Profiler, RPG, Meckenheim, Germany, 2005, 20 p.
  14. Singh D., Bhatia R.C. Development of a neural network algorithm for the retrieval of TPW from NOAA16 AMSU measurements, Int. J. Rem. Sensing, 2008, Vol. 29, No. 14, pp. 4045–4060.
  15. Vey S., Dietrich R., Johnsen K.-P., Miao J., Heygster G. Comparison of Tropospheric Water Vapour over Antarctica Derived from AMSU-B Data, Ground-Based GPS Data and the NCEP/NCAR Reanalysis, Journal of the Meteorological Society of Japan, 2004, Vol. 82, No. 1B, pp. 259–267.