ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 157-167

Vortex structures in aerosol atmospheric plasma

N.I. Izhovkina 1 , S.N. Artekha 2 , N.S. Erokhin 2 , L.A. Mikhailovskaya 2 
1 N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 26.08.2016
DOI: 10.21046/2070-7401-2016-13-9-157-167
Strong electric fields are observed when probing atmospheric clouds. The current distribution is determined by electric fields and the environment conductivity. The emergence of vortex structures is stochastically determined in a heterogeneous gyrotropic environment. The gyrotropy of the ionosphere and the atmosphere is associated with Coriolis force due to a rotation of the Earth and also with movements of charged particles in the geomagnetic field. The vortices of plasma nature are observed in the atmosphere. Non-monotonic stratification of unstable plasma irregularities leads to the formation of cellular structures. The manifestation of the electric field of plasma vortices may occur in fields of pressure gradient with a mosaic mesh topology under particles ionization. Aerosol particles play an important role in the atmospheric vortices generation. It is taken into consideration that the forces of the electromagnetic interaction between elements of a flow structure contribute to the intensification of this structure (increase of its energy and involvement of the atmospheric mass into it) by the powerful plasma vortex in the aerosol plasma of atmospheric clouds. The interaction of currents in spiral plasma vortices is determined by their intensity and geometrical parameters of their distribution in space.
Keywords: gyrotropy, plasma vortices, the geomagnetic field, atmospheric electric fields, aerosol particles, ionosphere
Full text

References:

  1. Aburdzhania G.D., Samoorganizatsiya nelineinykh vikhrevykh struktur i vikhrevoi turbulentnosti v dispergiruyushchikh sredakh (Self-organizing nonlinear vortex structures and vortex turbulence in dispersive media), Moscow: KomKniga, 2006, 328 p.
  2. Bondur V.G., Pulinets S.A., Kim G.A., O roli variatsii galakticheskikh kosmicheskikh luchei v tropicheskom tsiklogeneze na primere uragana Katrina (On the role of variations of galactic cosmic rays in tropical cyclogenesis on the example of Hurricane Katrina), DAN, 2008, Vol. 422, No. 2, pp. 244–249.
  3. Gdalevich G.L., Izhovkina N.I., Ozerov V.D., Struktura plazmennoi kaverny v F-sloe ionosfery na geomagnitnom ekvatore po dannym sputnika KOSMOS-900 (The structure of the plasma cavity in the F-layer of the ionosphere in the geomagnetic equator, according to satellite COSMOS-900), Kosmich. issled., 2003, Vol. 41, No. 6, pp. 596–606.
  4. Gdalevich G.L., Izhovkina N.I., Ozerov V.D., Bankov N., Chapkanov S., Todorieva L., Plazmennye neodnorodnosti v neustoichivoi vneshnei ionosfere po dannym sputnika Interkosmos–Bolgariya-1300 (Plasma inhomogeneities in unstable outer ionosphere according to the satellite Intercosmos–Bulgaria-1300), Kosmich. issled., 2006, Vol. 44, No. 5, pp. 438–443.
  5. Erokhin N.S., Mikhailovskaya L.A., Shalimov S.A., Ob usloviyakh prokhozhdeniya vnutrennikh gravitatsionnykh voln cherez vetrovye struktury iz troposfery v ionosferu (On the conditions of internal gravity waves passing through the wind structure from the troposphere to the ionosphere), Geofizicheskie protsessy i biosfera, 2012, Vol. 11, No. 4, pp. 5–22.
  6. Ivanov K.G., Kharshiladze A.F., Dinamika solnechnoi aktivnosti i anomal'noi pogody leta 2010 g. 1. Sektornoe stanovlenie i razrushenie struktury antitsiklona (Dynamics of the solar activity and anomalous weather of summer 2010. 1. Sectoral formation and destruction of anti-cyclone structure), Geomagnetizm i aeronomiya, 2011, Vol. 51, No. 4, pp. 450–455.
  7. Izhovkina N.I., Prutenskii I.S., Pulinets S.A., Shyutte N.M., Plokhova O.A., Klos Z., Rotkel' Kh., Potoki zaryazhennykh chastits i elektromagnitnoe izluchenie v verkhnei avroral'noi ionosfere po dannym eksperimenta APEKS (Flows of charged particles and electromagnetic radiation at the top of the auroral ionosphere according to the APEX experiment), Geomagnetizm i aeronomiya, 2000, Vol. 40, No. 4, pp. 53–59.
  8. Izhovkina N.I., Potoki energii i chastits v neustoichivoi plazme s vikhrevymi strukturami v verkhnei ionosfere v neodnorodnom geomagnitnom pole (Energy and particle flows in the unstable plasma with vortex structures in the upper ionosphere in an inhomogeneous geomagnetic field), Geomagnetizm i aeronomiya, 2010, Vol. 50, No. 6, pp. 817–824.
  9. Izhovkina N.I., Plazmennye vikhri v ionosfere i atmosfere (Plasma vortices in the ionosphere and atmosphere), Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 6, pp. 817–828.
  10. Izhovkina N.I., Afonin V.V., Karpachev A.T., Prutenskii I.S., Pulinets S.A., Struktura ionosfernogo provala dlya raznykh urovnei geomagnitnykh vozmushchenii i istochniki nagreva plazmy verkhnei dnevnoi ionosfery (The structure of the ionospheric trough for different levels of geomagnetic disturbances, and plasma heating sources of the upper daytime ionosphere), Geomagnetizm i aeronomiya, 1999, Vol. 39, No. 4, pp. 39–43.
  11. Izhovkina N.I., Erokhin N.S., Mikhailovskaya L.A., Artekha S.N., Osobennosti vzaimodeistviya plazmennykh vikhrei v atmosfere i ionosfere (Features of interaction of plasma vortices in the atmosphere and ionosphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 4, pp. 106–116.
  12. Mikhailovskaya L.A., Erokhin N.S., Krasnova I.A., Artekha S.N., Strukturnye kharakteristiki elektricheskoi turbulentnosti pri vertikal'nom profile elektricheskogo polya s sil'nym vspleskom (Structural characteristics of electrical turbulence for vertical profile of electric field with a strong splash), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 111–120.
  13. Mikhailovskaya L.A., Erokhin N.S., Krasnova I.A., Artekha S.N., Strukturnye kharakteristiki elektricheskoi turbulentnosti v grozovoi oblachnosti (Structural characteristics of electrical turbulence in storm clouds), Proc. International Conference MSS-14 "Mode Conversion, Coherent Structures and Turbulence", Moscow: Lenand, 2014, pp. 424–429.
  14. Mikhailovskii A.V., Teoriya plazmennykh neustoichivostei. T. 2. Neustoichivosti neodnorodnoi plazmy (Theory of plasma instabilities. Vol. 2. Instability of an inhomogeneous plasma), Moscow: Atomizdat, 1977, 312 p.
  15. Moiseev S.S., Sagdeev R.Z., Tur A.V., Yanovskii V.V., Teoriya vozniknoveniya krupnomasshtabnykh struktur v gidrodinamicheskoi turbulentnosti (The theory of large-scale structures origin in hydrodynamic turbulence), ZhETF, 1983, Vol. 85, No. 6 (12), pp. 1979–1987.
  16. Nezlin M.V., Chernikov G.P., Analogiya dreifovykh vikhrei v plazme i geofizicheskoi gidrodinamike (The analogy of drift vortices in the plasma and geophysical hydrodynamics), Fizika plazmy, 1995, Vol. 21, No. 11, pp. 975–999.
  17. Shyutte N.M., Izhovkina N.I., O dinamike rezonansnykh zaryazhennykh chastits v pole tsiklotronnykh voln (On the dynamics of the resonance charged particles in the field of cyclotron waves), Kosmicheskie issledovaniya, 1989, Vol. 27, No. 1, pp. 71–75.
  18. Artekha S.N., Belyan A.V., On the role of electromagnetic phenomena in some atmospheric processes, Nonlinear Processes in Geophysics, 2013, Vol. 20, pp. 293–304.
  19. Kennel C.F., Ashour-Abdalla M., Electrostatic waves and strong diffusion of magnetospheric electrons, Magnetospheric plasma physics, Dordrecht: Reidel Publishing Co., 1982, pp. 245–344.
  20. Kennel C.F., Engelman F., Velocity space diffusion from week plasma turbulence, Phys. Fluids., 1966. Vol. 9, No. 12, pp. 2377–2388.