ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 28-45

Capabilities of hyperspectral indices analysis of the Vega-Constellation remote monitoring information systems

V.P. Savorskiy 1, 2 , A.V. Kashnitskiy 2 , А.М. Konstantinova 2 , I.V. Balashov 2 , Yu.S. Krasheninnikova 2 , V.A. Tolpin 2 , S.M. Maklakov 1 , E.V. Savchenko 1 
1 V.A. Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Dept., Fryazino, Moscow Region, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 09.06.2016
DOI: 10.21046/2070-7401-2016-13-3-28-45
The main purpose of the work was to expand the functionality of the Vega-Constellation information systems by updating them with new services to handle hyperspectral data (HSD) sets. These services had to be tailored to assist the user in the study of a particular type (class) of natural objects using hyperspectral indices (HSI). To achieve this goal, a range of universal analytical tools to work with HSD were created. At the first stage of the work, forest and agricultural areas were chosen as target investigation objects. The capabilities of various HSI to reliably and accurately reflect the states of an object under investigation were analyzed. For each object, a set of HSI was selected for inclusion in the Vega-Constellation basic HSI services. In addition, Vega-Constellation was developed to provide custom HSI services enabling the user to generate his own, i.e. user-defined, HSI sets, which was intended to improve the assessment of the objects states in specific climatic conditions. The effectiveness of the web tools developed for the analysis of HSI was confirmed by examples given in the paper. In particular, with the help of the tools it was clearly demonstrated that using targeted indices, such as DWSI5, for estimating the irrigation efficiency was more expedient in comparison to using NDVI for these purposes.
Keywords: remote sensing of the Earth, hyperspectral data, hyperspectral indices, Vega-Constellation
Full text

References:

  1. Bartalev S.A., Ershov D.V., Loupian E.A., Tolpin V.A., Vozmozhnosti ispol'zovaniya sputnikovogo servisa VEGA dlya resheniya razlichnykh zadach monitoringa nazemnykh ekosistem (Possibilities of Satellite Service VEGA Using for Different Tasks of Land Ecosystems Monitoring ), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 49–56.
  2. Gordeev E.I., Girina O.A., Loupian E.A., Efremov V.Yu., Sorokin A.A., Mel'nikov D.V., Manevich A.G., Romanova I.M., Korolev S.P., Kramareva L.S., Vozmozhnosti ispol'zovaniya dannykh giperspektral'nykh sputnikovykh nablyudenii dlya izucheniya aktivnosti vulkanov Kamchatki s pomoshch'yu geoportala VolSatView (Using satellite hyperspectral data to study the activity of Kamchatka volcanoes on the basis of the VolSatView geoportal), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 267–284.
  3. Kanash E.V., Osnovnye kharakteristiki agrofitotsenozov dlya deshifrovaniya spektral'nykh dannykh distantsionnogo zondirovaniya (Basic characteristics of agrophytocenosis for decryption of spectral remote sensing data), Proc. Conf. ”Primenenie sredstv distantsionnogo zondirovaniya Zemli v sel'skom khozyaistve” (Earth remote sensing agriculture applications)”, St. Petersburg: FGBNU AFI, 2015, pp. 25–28.
  4. Kashnitskii A.V., Balashov I.V., Loupian. E.A., Tolpin V.A., Uvarov I.A., Sozdanie instrumentov dlya udalennoi obrabotki sputnikovykh dannykh v sovremennykh informatsionnykh sistemakh (Development of software tools for satellite data remote processing in contemporary information systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 156–170.
  5. Loupian E.A., Mazurov A.A., Nazirov R.R., Proshin A.A., Flitman E.V., Krasheninnikova Yu.S., Tekhnologii postroeniya informatsionnykh sistem distantsionnogo monitoringa (Technologies for Building Remote Monitoring Information Systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 26–43.
  6. Loupian E.A., Matveev A.A., Uvarov I.A., Bocharova T.Yu., Lavrova O.Yu., Mityagina M.I., Sputnikovyi servis See the Sea – instrument dlya izucheniya razlichnykh yavlenii na poverkhnosti okeana (The Satellite Service See the Sea – a tool for the Study of Oceanic Phenomena and Processes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 251–262.
  7. Loupian E.A., Proshin A.A., Burtsev M.A., Balashov I.V., Bartalev S.A., Efremov V.Yu., Kashnitskii A.V., Mazurov A.A., Matveev A.M., Sudneva O.A., Sychugov I.G., Tolpin V.A., Uvarov I.A., Tsentr kollektivnogo pol'zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving,processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol.12, No. 5, pp. 247–267.
  8. Loupian E.A., Savin I.Yu., Bartalev S.A., Tolpin V.A., Balashov I.V., Plotnikov D.E., Sputnikovyi servis monitoringa sostoyaniya rastitel'nosti («VEGA») (Satellite Service for Vegetation Monitoring VEGA), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 190–198.
  9. Loupian E.A., Savorskii V.P., Shokin Yu.I., Aleksanin A.I., Nazirov R.R., Nedoluzhko I.V., Panova O.Yu., Sovremennye podkhody i tekhnologii organizatsii raboty s dannymi distantsionnogo zondirovaniya Zemli dlya resheniya nauchnykh zadach (Up-to-date Approaches and Technology Arrangement of Earth Observation Data Applications Aimed to Solve Scientific Tasks), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 21–44.
  10. Tolpin V.A., Balashov I.V., Bartalev S.A., Loupian E.A., Plotnikov D.E., Ladonina N.N., Stytsenko F.V., Informatsionnaya sistema global'nogo sputnikovogo monitoringa sel'skogo khozyaistva VEGA-GEOGLAM (VEGA-GEOGLAM global satellite agriculture monitoring information system), 13-ya konf. "Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa" (13th Conf. ''Current Problems in Remote Sensing of the Earth from Space''), Moscow, 16–20 November 2015, Book of Abstracts, pp. 431.
  11. Tolpin V.A., Balashov I.V., Efremov V.Yu., Loupian E.A., Proshin A.A., Uvarov I.A., Flitman E.V., Sozdanie interfeisov dlya raboty s dannymi sovremennykh sistem distantsionnogo monitoringa (sistema GEOSMIS) (The GEOSMIS System: Developing Interfaces to Operate Data in Modern Remote Monitoring Systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 93–108.
  12. Uvarov I.A., Matveev A.M., Burtsev M.A., Loupian E.A., Mazurov A.A., Proshin A.A., Savorskii V.P., Sudneva O.A., Organizatsiya raspredelennoi raboty s dannymi sputnikovykh giperspektral'nykh nablyudenii dlya resheniya nauchnykh i prikladnykh zadach (Distributed data management of hyperspectral remote sensing data for scientific purposes and applications), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 322–333.
  13. Amigo J.M., Babamoradi H., Elcoroaristizabal S., Hyperspectral image analysis. A tutorial, Analytica Chimica Acta, 8 October 2015, Vol. 896, pp. 34–51.
  14. Apan A., Held A., Phinn S., Markley J., Formulation and assessment of narrow-band vegetation indices from EO-1 Hyperion imagery for discriminating sugarcane disease, Spatial Sciences Institute Biennial Conference (SSC 2003): Spatial Knowledge Without Boundaries, 22-26 Sep 2003, Canberra, Australia.
  15. Bellman R., Adaptive Control Processes: A Guided Tour, 1961, Princeton University Press, pp. XVI + 255.
  16. Boschetti M., Nutini F., Manfron G., Brivio P.A., Nelson A., Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems, PLoS One, 20 February 2014.
  17. Clark R.N., Swayze G.A., Wise R., Livo E., Hoefen T., Kokaly R., Sutley S.J., USGS digital spectral library splib06a, 2007, U.S. Geological Survey, Digital Data Series 231.
  18. Darvishzadeh R., Hyperspectral remote sensing of vegetation parameters using statistical and physical models, Ph. D. Thesis, International Institute for Geo-information Science & Earth Observation, Enschede, The Netherlands, Wageningen University, 2008, 169 p.
  19. Daughtry C.S.T., Walthall C.L., Kim M.S., Brown de Colstoun E., McMurtrey III, J.E., Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance, Remote Sensing of Environment, 2000, Vol. 74, pp. 229–239.
  20. Dennison P.E., Roberts D.A., Daytime fire detection using airborne hyperspectral data, Remote Sensing of Environment, 2009, Vol. 113, pp. 1646–1657.
  21. Guyon I., Elisseeff A., An Introduction to Feature Extraction, Studies in Fuzziness and Soft Computing, 2006, Vol. 207, pp. 1–25.
  22. Haboudane D., Miller J.R., Tremblay N., Zarco-Tejada P.J., Dextraze L., Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture, Remote Sensing of Environment, 2002, Vol. 81, pp. 416–426.
  23. Herrmann I., Karnieli A., Bonfil D. J., Cohen Y., Alchanatis V., SWIR-based spectral indices for assessing nitrogen content in potato fields, International Journal of Remote Sensing, 2010, Vol. 31, Issue 19, pp. 5127–5143.
  24. Hsu P.-H., Spectral Feature Extraction of Hyperspectral Images using Wavelet Transform, Ph.D. Thesis, Tainan, Taiwan, National Cheng Kung University, R.O.C., 2003, 158 p.
  25. Huang X.-M., Hsu P.-H., Comparison of wavelet-based and HHT-based feature extraction methods for hyperspectral image classification, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, Vol. 39, Pt. B7, pp. 121–126.
  26. Huete A.R., Justice C., Van Leeuwen W., Modis Vegetation Index (MOD 13). Algorithm Theoretical Basis Document, Version 3, 1999, 129 p.
  27. James G., Witten D., Hastie T., Tibshirani R., An introduction to statistical learning, Springer, 2013, 204 p., available at: http://www-bcf.usc.edu/~gareth/ISL.
  28. Karnieli A., Kaufman Y.J., Remer L., Wald A., AFRI – aerosol free vegetation index, Remote Sensing of Environment, 2001, Vol. 77, pp. 10–21.
  29. Luo Zh., Yaolin L., Jian W., Jing W., Quantitative mapping of soil organic material using field spectrometer and hyperspectral remote sensing, Photogrammetry, Remote Sensing and Spatial Information Sciences, The International Archives, 2008, Vol. 37, Part B8, pp. 901–906.
  30. Mathieu R., Pouget M., Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil colour of an arid environment., Remote Sensing of Environment, 1998, Vol. 66, pp. 17–28.
  31. Merzlyak M.N., Solovchenko A.E., Smagin A.I., Gitelson A.A., Apple flavonols during fruit adaptation to solar radiation: spectral features and technique for non-destructive assessment, Journal of Plant Physiology, 2005, Vol. 162, pp. 151–160.
  32. Merzlyak M.N., Gitelson A.A., Chivkunova O.B., Solovchenko A. E., Pogosyan S.I., Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigments, Russian Journal of Plant Physiology, 2003, Vol. 50, No. 5, pp. 704–710.
  33. Penuelas, J., Filella, I., Gamon, J.A., Assessment of photosynthetic radiation-use efficiency with spectral reflectance, The New Phytologist, November 1995, Vol. 131, No. 3, pp. 291–296.
  34. Rondeaux G., Steven M., Baret F., Optimization of soil-adjusted vegetation indices. Remote Sening of Environment, 1996, Vol. 55, pp. 95–107.
  35. Rouse J.W., Haas R.H., Scheel J.A., Deering D.W., Monitoring Vegetation Systems in the Great Plains with ERTS, Proc. 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1974, Vol. 1, pp. 48-62.
  36. Sims D.A. Gamon J.A., Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sensing of Environment, August 2002, Vol. 81, Issues 2–3, pp. 337–354.
  37. Smith R.B., Introduction to Hyperspectral Imaging, MicroImages, Inc, 2010, available at: http://www.microimages.com/documentation/Tutorials/hyprspec.pdf.
  38. Yakushev V.P., Kanash E.V., Osipov Yu. A., Optical Criteria in Estimating Deficiency of Basic Macroelements and Plant Fertilizer Requirements, EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation”, Turin, Italy, 24–27 June 2013, available at: http://www.cigr.org/Proceedings/uploads/2013/0217.pdf.