ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 184-191

Analytical expression of lightning strokes density spatial distribution over North Asia

L.D. Tarabukina 1, 2 , V.I. Kozlov 1, 2  , R.R. Karimov 1 
1 Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
2 M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia
 
Accepted: 25.04.2016
DOI: 10.21046/2070-7401-2016-13-3-184-191
The numerical simulation of spatial distribution of lightning stroke density is suggested based on data from World wide lightning location network (WWLLN). The raw data was corrected by the spatial coefficient of network detection efficiency. Resulted map is the average for summer season (1 June – 31 August, 2009-2014) lightning strike density and better describes the distribution of strikes with currents more than 100 kA due to WWLLN’s measuring features. The average variations of lightning density with latitude, longitude and terrain elevation are derived. The density variations with latitude and longitude are presented as sum of linear fit interpreting lightning activity decrease northward and eastward and Gauss function approximating high lightning density patterns. The density variation with terrain elevation is approximated with sum of three Gauss functions, peaks of which are associated with three local density maxima. These peaks are caused by different effects of orography influence on air convection. The geometric mean of functions approximating density dependence on latitude, longitude and elevation multiplied on the coefficient characterizing total level of density and defined by least residuals with data gives the determination coefficient of 0.6. When stroke density is assumed as function of latitudinal variations of stroke density with longitude, the analytical expression shows better fit to the data (coefficient of determination is 0.8).
Keywords: lightning stroke density, North Asia, lightning, spatial distribution of density
Full text

References:

  1. GOST R 50571.19-2000 (Standard of Russian Federation), Moscow: IPK Izdatel'stvo standartov, 2001.
  2. Kirillov V.I., Beloglazov M.I., Pchelkin V.V., Galakhov A.A., Vliyanie geomagnitnykh vozmushchenii na sezonnuyu dinamiku sutochnogo khoda atmosfernykh pomekh (Influence of geomagnetic disturbances on seasonal dynamics of daily variations in atmospherics), Geomagnetizm i aeronomiya, 2015, Vol. 55, No. 2, pp. 203-210.
  3. Kozlov V.I., Mullayarov V.A., Karimov R.R., Prostranstvennoe raspredelenie plotnosti grozovykh razryadov na Vostoke Rossii po dannym distantsionnykh nablyudenii (The spatial distribution of the lightning in the east of Russia on remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 257-262.
  4. Kozlov V.I., Fedorova G.V., Shabaganova S.N., Sutochno-sezonnye variatsii atmosferikov (Daily and seasonal variations of atmospherics), Vestnik Yakutskogo gosudarstvennogo universiteta, 2009, Vol. 6, No. 4, pp. 29-34.
  5. Oguryaev S.E., Issledovanie porogovogo raspredeleniya atmosferikov i ikh svyaz' s protsentom zanyatogo vremeni (Research of threshold distribution of atmospherics and their relation to percentage of occupied time), Trudy GGO im. A.I. Voeikova, 1966, Issue 188, pp. 23-28.
  6. Remizov L.T., Estestvennye radiopomekhi (Natural radio noise), Moscow: Nauka, 1985, 200 p.
  7. Aleksandrov M.S., Bakleneva Z.M., Gladshtein N.D., Ozerov V.P., Potapov A.V., Remizov L.T., Fluktuatsii elektromagnitnogo polya Zemli v diapazone SNCh (Fluctuations of electromagnetic field of the Earth in the ELF range), Moscow: Nauka, 1972, 195 p.
  8. Amante C., Eakins B.W., ETOPO1 1 Arc-Minute Global Relief Model: Procedures. Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 2009, 19 p.
  9. Bourscheidt V., Pinto O. Junior, Naccarato K.P., Pinto I.R.C.A. The influence of topography on the cloud-to-ground lightning density in South Brazil, Atmospheric Research, 2009, Vol. 91, No. 2, pp. 508-513.
  10. Dowden R.L., Brundell J.B., Rodger C.J., VLF lightning location by time of group arrival (TOGA) at multiple sites, J. Atmos. Solar-Terr. Phys., 2002, Vol. 64, No. 7, pp. 817-879.
  11. Hutchins M.L., Holzworth R.H., Brundell J.B., Rodger C.J., Relative detection efficiency of the world wide lightning location network, Radio Science, 2012, Vol. 47, No. 6, RS6005.
  12. Kotaki M., Kuriki I., Katoh C., Sugiuchi H., Global distribution of thunderstorm activity observed with ISS-b, Journal of the Radio Research Laboratories, 1981, Vol. 28, No. 125, pp. 49-71.
  13. Mackerras D., Darveniza M. Latitudinal variation of lightning occurrence characteristics, Journal of Geophysical Research, 1994, Vol. 99, No. D5, pp. 10.813-10.821.
  14. Mushtak V. C., Williams E. R., Boccippio D.J., Latitudinal variations of cloud base height and lightning parameters in the tropics, Atmospheric research, 2005, Vol. 76, No. 1, pp. 222-230.
  15. Orville R. E., Spencer D. W. Global lightning flash frequency, Monthly Weather Review, 1979, Vol. 107, No. 7, pp. 934-943.
  16. Tarabukina L.D., Kozlov V.I., Karimov R.R., Mullayarov V.A. Spatial distribution of lightning strikes over North Asia, Proceedings of SPIE, 21st International symposium on atmospheric and ocean optics: Atmospheric physics, Vol. 9680, p. 96805S.
  17. Williams E. R., Mushtak V. C., Boccippio D. J. The Role of Cloud Base Height in the Convective Vigor and Flash Rate of Thunderstorms, AGU Fall Meeting Abstracts, 2002, Vol. 1, p. 0091.