Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 173-183
Estimates of methane emission rates from some Arctic and sub-Arctic areas based on orbital interferometer IASI data
L.N. Yurganov
1 , I. Leifer
2
1 University of Maryland Baltimore County, Baltimore, USA
2 Bubbleology Research International, Santa-Barbara, USA
Accepted: 05.04.2016
DOI: 10.21046/2070-7401-2016-13-3-173-183
Methane is an important greenhouse gas. About half of its sources are directly induced by human activities, and the second half are connected with a variety of natural mechanisms. Many of these mechanisms have a positive temperature dependence. As it is known, the Arctic warming occurs to be approximately two times faster than the rise in global temperatures. This fact draws attention to studying processes of methane emissions in the Arctic, which may cause a positive climate feedback. Particular attention is given to methane emissions from the Arctic seas. For various logistical reasons the concentrations of methane over the Arctic Ocean are not well investigated. In particular, it is true for the cold period of the year. Meanwhile, a spectrometer AIRS and an interferometer IASI retrieve profiles of methane since 2002 and 2007, respectively. These data are publicly available. Both instruments operate in the thermal IR spectrum and record the outgoing radiation of the Earth and the atmosphere. Due to fundamental physical reasons, the content of the gases may be retrieved if a sufficient contrast in the atmospheric temperature takes place. The paper analyzes the data for cases of temperature contrast (the difference between the temperatures at the surface and at a height of 4 km) in excess of 10° C. All the measurements at the altitude range of 0-4 km for the period from 2010 to 2014 were averaged; then the climatological background was deducted from them. It was assumed that the methane anomaly have been proportional to the methane flux. A well-studied area of the West Siberian wetland with the annual emissions of methane 22 Tr was used to calibrate the scale of methane flux. The maps of the spatial distribution of methane emission rates from the sea surface near Norway, Spitsbergen, Novaya Zemlya, the Laptev Sea, and the Sea of Okhotsk, as well as the territory of Alaska were derived. These estimates are confirmed by the existing literature model and field data for Alaska, as well as by estimates of methane emissions derived from measurements of its supersaturation in the surface waters of the East Siberian Arctic Shelf (ESAS) area.
Keywords: IASI, Arctic, Arctic Ocean, Alaska, atmospheric methane
Full textReferences:
- Anisimov O.A., Lavrov S.A., Reneva S.A., Emissiya metana iz mnogoletnemerzlykh bolot Rossii v usloviyakh izmeneniya klimata (Emission of methane from permafrost swamps of Russia at the climate change conditions), Problemy ekologich. modelirovaniya i monitoringa ekosistem, Saint Petersburg: Gidrometeoizdat, 2005, pp. 124–142.
- Ivanov V.V., Alekseev V.A., Alekseeva T.A., Koldunov N.V., Repina I.A., Smirnov A.V. Arkticheskijj ledjanojj pokrov stanovitsja sezonnym? (Arctic ice cover transforms into seasonal one?), Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
- Kosmach D.A., Sergienko V.I., Dudarev O.V., Kurilenko A.V., Gustaffson O, Semiletov I. P., Shakhova N.E., Metan v poverhnostnyh vodah okrainnyh morej Severnoj Evrazii (Methane in surface waters of marginal seas of Northern Eurasia), DAN, 2015, Vol. 465, No. 4, pp. 441–445.
- Matveeva T.V., Solov'ev V.A., Gazovye gidraty Ohotskogo morja: zakonomernosti formirovanija i rasprostranenija (Gas hydrates of the Sea of Okhotsk: conditions of forming and distribution), Rossijskij himicheskij zhurnal, 2003, Vol. 157, No. 3, pp. 101–111.
- Obzhirov A.I., Geologija i metody poiska gazogidratov (Geology and methods of gas hydrates exploretion), Vestnik inzhenernoj shkoly DFVU, 2012, No. 1 (10).
- Yurganov L.N., Leifer A., Lund Myhre C., Sezonnaya i mezhgodovaya izmenchivost' atmosfernogo metana nad moryami Severnogo Ledovitogo okeana po sputnikovym dannym (Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 107–119.
- AMAP Assessment 2015: Methane as an Arctic climate forcer. Arctic Monitoring and Assessment Programme (AMAP), Oslo, vii + 139 pp. ISBN – 978-82-7971-091-2.
- Archer D. Methane hydrate stability and anthropogenic climate change, Biogeosciences, 2007, Vol. 4, pp. 521–544.
- Berchet A., Pison I., Chevallier F., Paris J.-D., Bousquet P., Bonne J.-L., Arshinov M.Y., Belan B.D., Cressot C., Davydov D.K., Dlugokencky E.J., Fofonov A.V., Galanin A., Lavrič J., Machida T., Parker R., Sasakawa M., Spahni R., Stocker B. D., Winderlich J., Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion, Biogeosciences, 2015, Vol. 12, pp. 5393–5414.
- Berchet A., Bousquet P., Pison I., Locatelli R., Chevallier F., Paris J.-D., Dlugokencky E.J., Laurila T., Hatakka J., Viisanen Y., Worthy D.E.J., Nisbet E.G., Fisher R.E., France J.L., Lowry D., Ivakhov V., Hermansen O., Atmospheric constraints on the methane emissions from the East Siberian Shelf, Atmospheric Chemistry and Physics, 2016, Vol. 16, pp. 4147-4157.
- Bergamaschi P., Houweling S., Segers A., Krol M., Frankenberg C., Scheepmaker R., Dlugokencky E., Wofsy S., Kort E., Sweeney C., Schuck T., Brenninkmeijer C., Chen H., Beck V., Gerbig C., Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, Journal of Geophysical Research, 2013, Vol. 118, pp. 7350–7369.
- Berndt C., Feseker T., Treude T., Krastel, S., Liebetrau V., Niemann H., Bertics V.J., Dumke I., Dunnbier K., Ferre B., Graves C., Gross F., Hissmann K., Huhnerbach V., Krause S., Lieser K., Schauer J., Steinle L., Temporal Constraints on Hydrate-Controlled Methane Seepage off Svalbard, Science, 2014, Vol. 343, pp. 284–287.
- Chang R.Y.-W., Miller C.E., Dinardo S.J., Karion A., Sweeney C., Daube B.C, Henderson J.M., Mountain M.E., Eluszkiewicz J., Miller J.B., Bruhwiler L.M.P., Wofsy S.C., Methane emissions from Alaska in 2012 from CARVE airborne observations, Proceedings of the National Academy of Sciences, 2014, Vol. 111, pp. 16694–16699.
- Crevoisier C., Nobileau D., Fiore A. M., Armante R., Chedin A, Scott N.A., Tropospheric methane in the tropics – first year from IASI hyperspectral infrared observations, Atmospheric Chemistry and Physics, 2009, Vol. 9, pp. 6337–6350.
- Fisher R.E., Sriskantharajah S., Lowry D., Lanoisellé M., Fowler C.M.R., James R.H., Hermansen O., Lund Myhre C., Stohl A., Greinert J., Nisbet-Jones P.B.R., Mienert J., Nisbet E.G., Arctic methane sources: isotopic evidence for atmospheric inputs, Geophysical Research Letters, 2011, Vol. 38, L21803.
- Fung I., John J., Lerner J., Matthews E., Prather M., Steele L.P., Fraser P.J. Three-dimensional model synthesis of the global methane cycle, Journal of Geophysical Research, 1991, Vol. 96, pp. 13033–13065.
- Melton J.R., Wania R., Hodson E.L., Poulter B., Ringeval B., Spahni R., Bohn T., Avis C.A., Beerling D.J., Chen G., Eliseev A.V., Denisov S.N., Hopcroft P.O., Lettenmaier D.P., Riley W.J., Singarayer J.S., Subin Z.M., Tian H., Zürcher S., Brovkin V., van Bodegom P.M., Kleinen T., Yu Z. C., Kaplan J.O., Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 2013, Vol. 10, pp. 753–788.
- Montzka S.A., Krol M., Dlugokencky E., Hall B., Jockel P., Lelieveld J., Small Interannual Variability of Global Atmospheric Hydroxyl, Science, 2011, Vol. 331, pp. 67–69.
- Razavi A., Clerbaux C., Wespes C., Clarisse L., Hurtmans D., Payan S., Camy-Peyret C., Coheur P., Characterization of methane retrievals from the IASI spaceborne sounder, Atmospheric Chemistry and Physics, 2009, Vol. 9, pp. 7889–7899.
- Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O., Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 2010, Vol. 327, pp. 1246–1250.
- Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernykh D., Stubbs C., Nicolsky D., Tumskoy V., Gustafsson O., Ebullition and storm-induced methane release from the East Siberian Arctic Shelf, Nature Geoscience, 2014, Vol. 7, pp. 64–70.
- Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G. , Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson O., The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice, Philosophical Transactions of the Royal Society A, 2015, Vol. 373, Issue 2052, pp. 1–13.
- Walsh J.E., Kattsov V.M., Chapman W.L., Govorkova V., Pavlova T., Comparison of Arctic climate simulations by uncoupled and coupled global models, Journal of Climate, 2002, Vol. 15, pp. 1429–1446
- Wania R., Melton J.R., Hodson E.L., Poulter B., Ringeval B., Spahni R., Bohn T., Avis C.A., Chen G., Eliseev A.V., Hopcroft P.O., Riley W.J., Subin Z.M., Tian H., van Bodegom P.M., Kleinen T., Yu Z.C., Singarayer J.S., Zürcher S., Lettenmaier D.P., Beerling D.J., Denisov S.N., Prigent C., Papa F., Kaplan J.O., Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geosciences Model Development, 2013, Vol. 6, pp. 617–641
- Westbrook G.K., Thatcher K.E., Rohling E.J., Piotrowski A.M., Pälike H., Osborne A.H., Nisbet E.G., Minshull E.A., Lanoisellé M., James R.H., Hühnerbach V., Green D., Fisher R.E., Crocker A.J., Chabert A., Bolton C., Beszczynska-Möller A., Berndt C., Aquilina A., Escape of methane gas from the seabed along the west Spitsbergen continental margin, Geophysical Research Letters, 2009, Vol. 36, L15608.
- Xiong X., Barnet C., Maddy E., Gambacorta A., King T., Wofsy S., Mid-upper tropospheric methane retrieval from IASI and its validation, Atmospheric Measurement Techniques, 2013, Vol. 6, pp. 2255–2265.
- Zona D., Gioli B., Commane R., Lindaas J., Wofsy S.C., Miller C.E., Dinardo S.J., Dengel S., Sweeney C., Karion A., Chang R.Y.-W, Henderson J.M., Murphy P.C., Goodrich J.P., Moreaux V., Liljedahl A., Watts J.D., Kimball J.S., Lipson D.A., Oechel W.C., Cold season emissions dominate the Arctic tundra methane budget, Proceedings of National Academy of Science, 2016, Vol. 113 (1), pp. 40–45.