ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 136-149

The development of optical methods for sea surface slope measurement

N.E. Lebedev 1 , A.A. Aleskerovа 1 , E.V. Plotnikov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 06.04.2016
DOI: 10.21046/2070-7401-2016-13-3-136-149
A brief overview of the development of optical methods for sea surface slope measurement is presented with consideration of passive and active methods. The first optical slope investigations were performed using sea surface images obtained at the beginning of the XX century by means of stereo photography. In 1950s these were followed by the Cox-Munk experiment, in which the determination of slope characteristics was carried out by means of aerial photographs analysis. In 2000s for purposes of sea surface slope measurements, satellite optical scanners were used. Active methods of sea slope investigations began to develop rapidly with the appearance of lasers. These can be divided into two groups: methods based on laser beam reflectance at the sea surface, and methods based on laser beam refraction through the water-air boundary. Possibilities and limitations of these methods are considered. Results of slope measurements obtained by passive and active methods are intended for use in different fields of application. Passive methods provide information for applications of meteorology and oceanography. Active ones focus on solving the ocean-atmosphere interaction issues, and primarily the study of sea surface manifestation of processes that occur in the ocean-atmosphere boundary layer.
Keywords: means and methods of measurements, sea surface slopes, light reflection, light refraction
Full text

References:

  1. Abroskin A.G., Bunkin A.F., Vlasov D.V. Naturnye eksperimenty po lazernomu zondirovaniyu na ustanovke Chaika (In situ experiments on laser sounding installation Seagull), Tr. IOFAN, Distantsionnoe zondirovanie okeana, 1986, Vol. 1, pp. 23–39.
  2. Aleksandrov A.P., Legeza V.P. Lazernyi izmeritel’ srednekvadratichnykh naklonov vzvolnovannoi morskoi poverkhnosti (Laser meter of rough sea surface rms slopes), Morskoi gidrofizicheskii zhurnal, 1988, No. 6, pp. 51–56.
  3. Bass F.G., Braude S.Ya., Kalmykov A.I., Men’ A.V., Ostrovskii I.E, Pustovoitenko V.V., Rozenberg A.D., Fuks I.M. Metody radiolokatsionnykh issledovanii morskogo volneniya (radiookeanografiya) (Methods of radar studies of sea waves (radio oceanography)), Uspekhi fizicheskikh nauk, 1975, Vol. 116, pp. 741–743.
  4. Bunkin F.V., Volyak K.I., Malyarovskii V.G., Mikhalevich V.G., Solntsev M.V., Shevchenko T.B., Shugan I.V. Izmerenie parametrov vetrovogo volneniya po statistike otrazhennogo lazernogo signala (Measurement of wind waves parameters by statistics of reflected laser signal), Tr. IOFAN SSSR, Moscow: Nauka, 1986, pp. 3–23.
  5. Gurevich G.S., Zhiguleva I.S., Lysenko B.N. Pavlov V.I., Rokotyan V.E., Sheinin A.B. Opredelenie formy morskoi poverkhnosti s pomoshch’yu lidara (Determination of the sea surface shape by lidar), Tr. TsAO, 1979, Issue 139, pp. 93–98.
  6. Davidan I.N., Trapeznikov Yu.L. Problemy issledovaniya vysokochastotnoi oblasti spektra vetrovykh voln (Problems of the high-frequency part of wind waves spectrum research), Gidrometeorologiya. Ser. Okeanologiya, Issue 1, Obninsk, 1981, 46 p.
  7. Zagorodnikov A.A. Radiolokatsionnaya s”emka morskogo volneniya s letatel’nykh apparatov (Radar imagery of sea waves from aircrafts), Leningrad: Gidrometeoizdat, 1978, 239 p.
  8. Zapevalov A.S. Zavisimost’ statistiki blikov zerkal’nogo otrazheniya pri lazernom zondirovanii morskoi poverkhnosti ot kharakteristik ee lokal’nykh uklonov (Dependence of the statistics of optical flares due to specular reflections from sea surface on the local surface slopes), Optika atmosfery i okeana, 2000, Vol. 13, No. 1, pp. 1123–1127.
  9. Zapevalov A.S. Statisticheskie modeli morskoi poverkhnosti v zadachakh rasseyaniya akusticheskogo i elektromagnitnogo izlucheniya: Diss. fiz.-mat. nauk (Statistical models of the sea surface in problems of acoustic and electromagnetic radiation scattering. Doct. phys. and math. sci. thesis), Sevastopol’: Morskoi gidrofizicheskii institut NAN Ukrainy, 2008, 290 p.
  10. Zapevalov A.S., Lebedev N.E. Modelirovanie statisticheskikh kharakteristik poverkhnosti okeana pri distantsionnom zondirovanii v opticheskom diapazone (Simulation of statistical characteristics of sea surface during remote optical sensing), Optika atmosfery i okeana, 2014, Vol. 27, No. 1, pp. 28–33.
  11. Zapevalov A.S., Ratner Yu.B. Effekty kvazigaussovogo kharaktera raspredeleniya uklonov morskoi poverkhnosti pri lazernom zondirovanii (Effects of quasi-Gaussian distribution of the sea-surface slopes at laser sounding), Optika atmosfery i okeana, 2002, Vol. 15, No. 10, pp. 925–928.
  12. Kendall M.-J., Stewart A., Teoriya raspredelenii (Distributions Theory), Moscow: Nauka, 1966, 588 p.
  13. Nosov V.N., Pashin S.Yu., Khandogin D.N., Dubner A.B. Ob ispol’zovanii metoda lazernogo zondirovaniya dlya registratsii anizotropii poverkhnostnogo volneniya (On the use of laser sounding method for registration of the surface waves anisotropy), Izv. AN SSSR. Fizika atmosfery i okeana, 1990, Vol. 26, No. 2, pp. 206–212.
  14. Pustovoitenko V.V., Zapevalov A.S., Operativnaya okeanografiya: Sputnikovaya al’timetriya – Sovremennoe sostoyanie, perspektivy i problemy (Operational oceanography: Satellite altimetry – Current state, prospects and problems), Sevastopol': Morskoi gidrofizicheskii institut NAN Ukrainy, 2012, 218 p.
  15. Pustovoitenko V.V., Lebedev N.E. Sravnenie statisticheskikh momentov uklonov morskoi poverkhnosti, poluchennykh po dannym opticheskikh skanerov i lazernykh uklonomerov (Comparison of sea surface slope statistical moments obtained by means of optical scanners and laser inclinometers), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 102–109.
  16. Strizhkin I.I. Analiz opticheskogo metoda opredeleniya uklonov voln po fotosnimkam zony blika (Analysis of optical method of determining wave slopes from photographs of glitter zone), Izv. Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2010, Vol. 46, No. 3, pp. 411–419.
  17. Khristoforov G.N., Zapevalov A.S., Babii M.V. Izmereniya parametrov sherokhovatosti morskoi poverkhnosti pri perekhode ot shtilya k vetrovomu volneniyu (Measurements of the sea surface roughness parameters at the transition from calm sea to windy sea), Izv. Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 1992a, Vol. 28, No. 4, pp. 424–431.
  18. Khristoforov G.N., Zapevalov A.S., Babii M.V. Statisticheskie kharakteristiki uklonov morskoi poverkhnosti pri raznykh skorostyakh vetra (Statistical characteristics of the sea surface slopes at different wind speeds), Okeanologiya, 1992b, Vol. 32, Issue 3, pp. 452–459.
  19. Khristoforov G.N., Zapevalov A.S., Smolov V.E. Zavisimost’ amplitudnykh kharakteristik vysokochastotnykh komponent spektra vetrovykh voln ot skorosti vetra nad morem (Dependence of the amplitude characteristics of high-frequency components of the wind waves spectrum from the wind speed over the sea), Morskoi gidrofizicheskii zhurnal, 1993a, No. 3, pp. 67–77.
  20. Khristoforov G.N., Zapevalov A.S., Smolov V.E., Fel’dman Yu.R. Lazernaya lokatsiya topograficheskikh neodnorodnostei na sherokhovatoi morskoi poverkhnosti (Laser location of the topographic irregularities on the rough sea surface), Morskoi gidrofizicheskii zhurnal, 1993b, No. 6, pp. 64–73.
  21. Shuleikin V.V. Opticheskii metod izucheniya morskikh voln (An optical method for the sea waves studying), Zapiski po gidrografii, 1924, Vol. 5, No. 9, pp. 49–56.
  22. Bréon F.M, Henriot N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions, J. Geoph. Res., 2006, Vol. 111, No. C6, C06005.
  23. Cox C., Munk W. Slopes of the sea surface deduced from photographs of sun glitter, J. Optical. Soc. America, 1954, Vol. 44, No. 11, pp. 838–850.
  24. Donelan M.A., Hamilton J., Hui W.H. Directional spectra of wind-generated waves, Phil. Trans. R. Soc. London, 1985, Vol. A315, pp. 509–562.
  25. Ebuchi N., Kizu S. Probability distribution of surface wave slope derived using Sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers, J. Oceanogr., 2002, Vol. 58, pp. 477–486.
  26. Fox D., Gonzalez E., Kahn R., Martonchik J. Near-surface wind speed retrieval from space-based, multi-angle imaging of ocean sun glint patterns, Remote Sensing of Environment, 2007, Vol. 107, Issue 1, pp. 223–231.
  27. Fukushima H., Suzuki K., Li L., Suzuki N., Murakami H. Improvement of the ADEOS-II/GLI sun-glint algorithm using concomitant microwave scatterometer-derived wind data, Adv. Space Res., 2009, Vol. 43, Issue 6, pp. 941–947.
  28. Gatebe C.K, King M.D, Lyapustin A.I, Arnold G.T, Redemann J. Airborne spectral measurements of ocean directional reflectance, J. Atmos. Sci., 2005, Vol. 62, Issue 4, pp. 1072–1092.
  29. Hu Y., Stamnes K., Vaughan M., Pelon J., Weimer C., Wu D., Cisewski M., Sun W., Yang P., Lin B., Omar A., Flittner D., Hostetler C., Trepte C., Winker D., Gibson G., Santa-Maria M. Sea surface wind speed estimation from space-based lidar measurements, Atmos. Chem. Phys., 2008, Vol. 8, pp. 3593–3601.
  30. Hu Y., Weimer C. High Resolution Sea Surface Roughness and Wind Speed with Space Lidar (CALIPSO), 2009, available at: http://cimss.ssec.wisc.edu/iwwg/iww10/talks/hu.pdf (March 16, 2016).
  31. Hughes B.A, Grant H.L, Chappell R.W.A. A fast response surface-wave slope meter and measured wind-wave components, Deep-Sea Res., 1977, Vol. 24, No. 12, pp. 1211–1223.
  32. Hulburt E.O. The polarization of light at sea, J. Optical. Soc. America, 1934, Vol. 24, No. 1, pp. 35–42.
  33. Jelalian A. Sea echo at laser wavelengths, Proc. IEEE, 1968, Vol. 56, No. 5, pp. 49–56.
  34. Lubard S.C, Krimmel J.E., Thebaud L.R., Evans D.D, Shemdin O.H. Optical image and laser slope meter intercomparisons on high-frequency waves, J. Geophys. Res., 1980, Vol. 85, pp. 4996–5002.
  35. MERIS Products Quality Status Report MEGS7.4 and IPF 5, available at: https://earth.esa.int/documents/700255/707220/MERISQualityAssessment-MEGS74-IPF502-QWG-V1.0.pdf.
  36. Mermelstein M.D., Shettle E.P., Takken E.H., Priest R.G. Infrared radiance and solar glint at the ocean–sky horizon, Applied Optics, 1994, Vol. 33, Issue 25, pp. 6022–6034.
  37. Palm C.S., Anderson R.S., Reese A.M. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves, Applied Optics, 1977, Vol. 46, No. 4, pp. 1074–1081.
  38. Shaw J.A., Churnside J.H. Scanning-laser glint measurements of sea-urface slope statistics, Applied Optics, 1997, Vol. 36, No. 18, pp. 4202–4213.
  39. Su W., Charlock P., Rutledge K. Observations of reflectance distribution around sunglint from a coastal ocean platform, Applied Optics, 2002, Vol. 41, Issue 35, pp. 7369–7383.
  40. Tang S., Shemdin O.H. Measurement of high frequency waves using a wave follower, J. Geophys. Res., 1983, Vol. 88, Issue C14, pp. 9832– 9840.
  41. Tober G., Anderson R.S., Shemdin O.H. Laser instrument for detecting water ripple slopes, Applied Optics, 1973, Vol. 12, No. 4, pp. 788–794.
  42. Wu J., Haimbach S.P, Hsu Y.-H.L. Scanner for measuring fine sea-surface structures, Rev. Sci. Instr., 1981, Vol. 52, pp. 99–104.
  43. Wu J., Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition, Radio Sci., 1990, Vol. 25, pp. 37–48.
  44. Zhang H., Wang M. Evaluation of sun glint models using MODIS measurements, J. Quant. Spectro. Rad. Trans., 2010, Vol. 111, Issue 3, pp. 492–506.