ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 67-83

Peculiarities of a modified model of spectral and energy characteristics of scattered waves considering the emitting and receiving antenna patterns for bistatic sensing of the sea surface

Yu.A. Titchenko 1 , V.Yu. Karaev 1 
1 Institute of Applied Physics RAS, Nizhniy Novgorod, Russia

Accepted: 07.03.2016
DOI: 10.21046/2070-7401-2016-13-2-67-83 

The formulas for the scattering cross section, shift and width of the Doppler spectrum of the scattered signal on anisotropic sea surface taking into account the antenna patterns of receiving and transmitting antenna were obtained in this study. The formulas obtained by the tangent plane method (Kirchhoff method) for the most general case of bistatic sensing, without limitations on the statement of the problem, except for the location of the receiving and radiating antennas in the Fraunhofer zone relative to the scattering surface. A feature of the approach is a representation of the two-dimensional characteristic function of a random variable in terms of the second statistical moments. The resulting formulas are applicable to both acoustic and electromagnetic case. Angular dependence of the spectral and energy characteristics of the scattered signal by the sea surface at different azimuthal viewing angles and at different angles of incident radiation is shown. It is shown that the spectral and energy characteristics of the signal scattered by the sea surface is completely determined by the second statistical moments of a surface that can be retrieved in the general case when selecting the desired measurement scheme.
Keywords: scattering cross section, Doppler spectrum, waves scattering, statistically rough surface, the inverse problem, theoretical model, Kirchhoff approximation, tangent plane method, slope variance, antenna pattern, bistatic scattering
Full text

References:

  1. Bass F.G., Fuks I.M., Rasseyanie voln na statisticheski sherokhovatoi poverkhnosti (Waves scattering on a statistically rough surface), Moscow: Nauka, 1972, 424 p.
  2. Brekhovskikh L.M., Difraktsiya zvukovykh voln na nerovnoi poverkhnosti (Diffraction of sound waves on a rough surface), DAN SSSR, 1951, Vol. 79, No. 4, pp. 585–588.
  3. Garnaker'yan A.A., Sosunov A.S., Radiolokatsiya morskoi poverkhnosti (Radar sensing of sea surface), Rostov: Izd. Rostovskogo universiteta, 1978, 144 p.
  4. Zubkovich S.G., Statisticheskie kharakteristiki radiosignalov, otrazhennykh ot zemnoi poverkhnosti (The statistical characteristics of radio signals reflected from the Earth's surface), Moscow: Sovetskoe radio, 1968, 224 p.
  5. Isakovich M.A., Rasseyanie voln ot statisticheski-sherokhovatoi poverkhnosti (Wave scattering from statistically rough surface), ZhETF, 1952, Vol. 23, No. 3 (9), pp. 305–314.
  6. Kanevskii M.B., Karaev V.Yu., Spektral'nye kharakteristiki radiolokatsionnogo SVCh signala, otrazhennogo morskoi poverkhnost'yu pri malykh uglakh padeniya (obratnoe rasseyanie) (Spectral characteristics of radar microwave signal reflected from the sea surface at small angles of incidence (backscattering)), Izvestiya vysshikh uchebnykh zavedenii. Radiofizika, 1996, Vol. 39, No. 5, pp. 517–526.
  7. Karaev V.Yu., Balandina G.N., Angelov M.K., Ob osobennostyakh opisaniya volneniya primenitel'no k resheniyu zadach distantsionnogo zondirovaniya morskoi poverkhnosti. Preprint IPF RAN (On peculiarities of description the excitement in relation to solving problems of remote sensing of the sea surface. Preprint IAP RAS), Nizhniy Novgorod: IAP RAS, No. 470, 1998, 32 p.
  8. Karaev V.Yu., Balandina G.N., Modifitsirovannyi spektr volneniya i distantsionnoe zondirovanie (Modified spectrum of waves and remote sensing), Issledovanie Zemli iz kosmosa, 2000, No.5, pp. 1–12.
  9. Linnik Yu.V., Ostrovskii I.V., Razlozheniya sluchainykh velichin i vektorov (Decomposition of random variables and vectors), Moscow: Nauka, 1972, 482 p.
  10. Meshkov E.M., Karaev V.Yu., Opredelenie parametrov morskogo volneniya po doplerovskomu spektru radiolokatsionnogo SVCh signala, otrazhennogo vodnoi poverkhnost'yu (Determination of sea waves parameters from the microwave radar Doppler spectrum of the signal reflected from the water surface), Izvestiya vysshikh uchebnykh zavedenii. Radiofizika, 2004, Vol. 47, No. 3, pp. 231–244.
  11. Rytov S. M., Kravtsov Yu. A., Tatarskii V. I., Vvedenie v statisticheskuyu radiofiziku. Ch.2: Sluchainye polya (Introduction to Statistical Radiophysics. Part 2: Random field.), Moscow: Nauka, 1978, 464 p.
  12. Titchenko Yu.A., Karaev V.Yu., Metod opredeleniya parametrov morskogo volneniya s pomoshch'yu modifitsirovannogo akusticheskogo volnografa (The method of determining the sea-wave parameters by using a modified acoustic wave gauge), Izvestiya vysshikh uchebnykh zavedenii. Radiofizika, 2012, Vol. 55, No. 8, pp. 544–554.
  13. Cox C., Munk W., Slopes of the sea surface deduced from photographs of sun glitter, Bull. Scripps Inst. Oceanogr., 1956, Vol. 6, pp. 401–488.
  14. Elfouhaily T., Chapron B., Katsaros K., Vandemark D., A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res., 1997, Vol. 102, pp. 15781–15796.
  15. Elfouhaily T., Guérin C., A critical survey of approximate scattering wave theories from random rough surfaces, Waves in Random Media, 2004, Vol. 14, Iss. 4, pp. 1–40.
  16. Fois F., Enhanced Ocean Scatterometry: PhD Thesis, 2015.
  17. Karaev V.Yu., Kanevsky M.B., Balandina G.N., Cotton P.D., Challenor P.G., Gommenginger C.P., Srokosz M.A., On the problem of the near ocean surface wind speed retrieval by radar altimeter: a two-parameter algorithm, International Journal of Remote Sensing, 2002, Vol. 23, No. 16, pp. 3263–3283.
  18. Kudryavtsev V., Hauser D., Gaudal G., Charpon B., A semiempirical model of the normalized radar cross-section of the sea surface- 1. Background model, J. Geophys. Res., 2003. Vol. 108, No. C3, P. 8054.18. Kudryavtsev V., Hauser D., Gaudal G., Charpon B., A semiempirical model of the normalized radar cross-section of the sea surface- 1. Background model, J. Geophys. Res., 2003. Vol. 108, No. C3, P. 8054.18. Kudryavtsev V., Hauser D., Gaudal G., Charpon B., A semiempirical model of the normalized radar cross-section of the sea surface- 1. Background model, J. Geophys. Res., 2003. Vol. 108, No. C3, P. 8054.
  19. Lemaire D., Non-Fully Developed Sea state Characteristics from Real Aperture Radar Remote Sensing: PhD Thesis, 1998.
  20. Titchenko Yu., Karaev V., Meshkov E., Zuikova E., Measuring the variance of the vertical orbital velocity component by an acoustic wave gauge with a single transceiver antenna, Geoscience and Remote Sensing, IEEE Transactions on, 2015, Vol. 53. No. 8, pp. 4340–4347.
  21. Valenzuela G.R., Theories for the interaction of electromagnetic and oceanic waves - a review, Boundary-Layer Meteorology, 1978, Vol. 13, pp. 61–85.
  22. Voronovich A. G., Zavorotny V. U., Ocean-scattered polarized bistatic radar signals modeled with small-slope approximation, Proceedings of IGARSS’12, 2012, pp. 3415–3418.
  23. Winebrenner D. P., Hasselmann K., Specular Point Scattering Contribution to the Mean Synthetic Aperture Radar Image of the Ocean Surface, Journal of Geophysical Research, 1988, Vol. 93, No. C8, pp. 9281–9294.
  24. Zavorotny V.U., Voronovich A.G., Scattering of GPS Signals from the Ocean with Wind Remote Sensing Application, Geoscience and Remote Sensing, IEEE Transactions on, 2000, Vol. 38, No. 2, pp. 951–964.
  25. Zhang B., Perrie W., Vachon P.W., Li X., Pichel W.G., Jie G., He Y., Ocean Vector Winds Retrieval From C-Band Fully Polarimetric SAR Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 2012, Vol. 50, No. 11, pp. 4252–4261.