ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 120-131

Spectral characteristics of atmospheric waves generated by winter stratospheric jet stream in the Northern Hemisphere

B.G. Shpynev 1 , M.A. Chernigovskaya 1 , D.S. Khabituev 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia

Accepted: 22.02.2016
DOI: 10.21046/2070-7401-2016-13-2-120-131 

We studied the spatial and temporal variations of atmospheric air vertical velocity in the stratosphere and lower mesosphere in the Northern Hemisphere over years 2008–2013. Based on the ECMWF ERA-Interim reanalysis data, we identified periods of middle-scale wave-like motions in the autumn-winter period (between November and February) for all years under analysis. These wave-like motions were associated with jet streams at the stratosphere/lower mesosphere heights and could be sources of atmospheric gravity waves. We studied spatial variations of the vertical velocity for different heights and latitudes. The height variations of the vertical velocity spectra showed that these waves propagated as internal gravity waves above some critical stratosphere height near the stratopause. Below this height the waves decayed as a result of turbulent cascade process. The region of generation of the wave-like motions coincided with the zone of interaction of the jet streams, located at different stratosphere heights.
Keywords: the lower and upper atmosphere, interaction between atmospheric layers, wave disturbances
Full text


  1. Vargin P.N, Volodin E.M., Karpechko A.Yu., Pogorel'tsev A.I., O stratosferno-troposfernykh vzaimodeistviyakh (About stratosphere-troposphere coupling), Vestnik RAN, 2015, Vol. 85, No. 1, pp. 39–46.
  2. Erokhin N.S., Zol'nikova N.N., Mikhailovskaya L.A., Osobennosti vzaimodeistviya vnutrennikh gravitatsionnykh voln s temperaturno-vetrovymi strukturami atmosfery pri rasprostranenii v ionosferu (Features of the internal gravity waves propagation into the ionosphere and their interaction with the structures of the atmospheric wind and temperature), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2007, Vol. 4, No. 2. pp. 84–89.
  3. Ivangorodsky R.V., Nerushev A.F., Kharakteristiki struinykh techenii verkhnei troposfery po dannym izmerenii evropeiskikh geostatsionarnykh meteorologicheskikh sputnikov (Characteristics of the upper tropospheric jet fluxes inferred from the data of European geostationary meteorological satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 45–53.
  4. Chernigovskaya M.A., Sutyrina E.N., Ratovsky K.G., Meteorologicheskie effekty ionosfernoi vozmushchennosti nad Irkutskom po dannym vertikal'nogo radiozondirovaniya (Meteorological effects of ionospheric disturbances over Irkutsk according to vertical radio sounding data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 264–274.
  5. Abatzoglou J.T., Magnusdottir G., Wave breaking along the stratospheric polar vortex as seen in ERA-40 data, Geophys. Res. Lett., 2007, Vol. 34, No. 8. L08812 p., doi:10.1029/2007GL029509.
  6. Alexander M.J., Global and seasonal variations in threedimensional gravity wave momentum flux from satellite limb-sounding temperatures, Geophys. Res. Lett., 2015, Vol. 42, pp. 6860–6867, doi:10.1002/2015GL065234.
  7. Alexander M.J., Barnet C., Using satellite observations to constrain parameterizations of gravity wave effects for global models, J. Atmos. Sci., 2007, Vol. 64, No. 5, pp. 1652–1665, doi: 10.1175/JAS3897.1.
  8. Baldwin M.P., Holton J.R. Climatology of the stratospheric polar vortex and planetary wave breaking, J. Atmos. Sci., 1988, Vol. 45, No. 7, pp. 1123–1142.
  9. Bossert K.D. Fritts C., Pautet P.-D., Williams B.P., Taylor M.J., Kaifler B., Dörnbrack A., Reid I.M., Murphy D.J., Spargo A.J., MacKinnon A.D., Momentum flux estimates accompanying multiscale gravity waves over Mount Cook, New Zealand, on 13 July 2014 during the DEEPWAVE campaign, J. Geophys. Res. Atmos., 2015, Vol. 120, No. 18, pp. 9323–9337, doi:10.1002/2015JD023197.
  10. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G., Meteorological effects of ionospheric disturbances from vertical radio sounding data, J. Atmos. Sol. Terr. Phys., 2015, Vol. 136, pp. 235–243, doi:10.1016/j.jastp.2015.07.006.
  11. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M.,, Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q.J.R. Meteorol. Soc., 2011, Vol. 137, No. 656, pp. 553–597, doi:10.1002/qj.828.
  12. Fritts D.C., Alexander M.J., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, Vol. 41, No. 1, pp. 1003-1066, doi: 10.1029/2001RG000106.
  13. Hamilton K. Dynamical coupling of the lower and middle atmosphere: Historical background to current research, J. Atmos. Sol. Terr. Phys., 1999, Vol. 61, No. 1, pp. 73–84.
  14. Hecht J.H., Alexander M.J., Walterscheid R.L., Gelinas L.J., Vincent R.A., MacKinnon A.D., Woithe J.M., May P.T., Skinner W.R., Mylnczak M.G., Russell J.M., III Imaging of atmospheric gravity waves in the stratosphere and upper mesosphere using satellite and ground-based observations over Australia during the TWPICE campaign, J. Geophys. Res., 2009, Vol. 114, No. D18, 123 p., doi:10.1029/2008JD011259.
  15. Kaifler B., Lübken F.-J., Höffner J., Morris R.J., Viehl T.P. Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica, J. Geophys. Res. Atmos., 2015, Vol. 120, No. 10, pp. 4506–4521, doi:10.1002/2014JD022879.
  16. Karpetchko A., Kyrö E., Knudsen B.M. Arctic and Antarctic polar vortices 1957–2002 as seen from the ERA-40 reanalyses, J. Geophys. Res., 2005, Vol. 110, No. D21, 109 p., doi:10.1029/2005JD006113.
  17. Kushner P.J. Annular modes of the troposphere and stratosphere, In: The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr. Ser., 2010, Vol. 190, pp. 59-91, doi:10.1029/2009GM000924.
  18. Labiztke K.G., van Loon H. The Stratosphere: Phenomena, History, and Relevance, NewYork: Springer, 1999, 179 p.
  19. Newman P.A., Schoeberl M.R. Middle atmosphere: Polar vortex, In: Encyclopedia of Atmospheric Sciences, edited by J.R. Holton, J. Pyle, and J.A. Curry, San Diego, Calif.: Academic, 2003, pp. 1321–1328.
  20. Perevalova N.P., Polyakova A.S., Pogoreltsev A.I. Variations in the characteristics of acoustic gravity waves according to simulation data, Geomagnetism and Aeronomy, 2013, Vol. 53, No. 3, pp. 397-408.
  21. Plougonven R., Zhang F. Internal gravity waves from atmospheric jets and fronts, Rev. Geophys., 2014, Vol. 52, pp. 1–37, doi:10.1002/2012RG000419.
  22. Shpynev B.G., Churilov S.M., Chernigovskaya M.A. Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere, J. Atmos. Sol. Terr. Phys., 2015, Vol. 136, pp. 201–215, doi:10.1016/j.jastp.2015.07.005.
  23. Tsuda T. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation, Proc. Jpn. Acad., Ser. B., 2014, Vol. 90, No. 1, pp. 12–27.
  24. Vincent R.A. Gravity wave coupling from below: A review, Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium. Tokyo: TERRAPUB, 2009, pp. 279–293.
  25. Vincent R.A. The dynamics of the mesosphere and lower thermosphere: a brief review, Prog. Earth Planet Sci., 2015, Vol. 2, No. 1, pp. 1–13, doi:10.1186/s40645-015-0035-8.
  26. Wang L., Geller M.A., Alexander M.J. Spatial and temporal variations of gravity wave parameters. Part I: Intrinsic frequency, wavelength, and vertical propagation direction, J. Atmos. Sci., 2005, Vol. 62, No. 1, pp. 125–142, doi:
  27. Waugh D.W., Polvani L.M. Stratospheric Polar Vortices, In: The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr. Ser., 2010, Vol. 190, pp. 43–57, doi:10.1029/2009GM000887.
  28. Wu D.L., Eckermann S.D. Global gravity wave variances from Aura MLS: Characteristics and Interpretation, J. Atmos. Sci., 2008, Vol. 65, No. 12, pp. 3695–3718, doi:10.1175/2008JAS2489.1.
  29. Wu D.L., Waters J.W. Gravity wave scale temperature fluctuations seen by the UARS MLS, Geophys. Res. Lett., 1996, Vol. 23, No. 23, pp. 3289–3292.
  30. Yamashita C., Liu H.L., Chu X. Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations, Geophys. Res. Lett., 2010, Vol. 37, No. 22, L22806 p., doi: 10.1029/2010GL045437.
  31. Yiğit E., Medvedev A.S. Internal waves coupling processes in Earth's atmosphere, Adv. Space Res., 2015, Vol. 55, No. 4, pp. 983–1003.