ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 53-66

Preliminary comparisons of sea current velocity vector measurements by a nautical X-band radar and moored ADCP

D.V. Ivonin 1 , P.V. Chernyshov 2 , S.B. Kuklev 2 , S.A. Myslenkov 3 
1 P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Southern Branch of P.P. Shirshov Institute of Oceanology RAS, Gelendzhik, Russia
3 M.V. Lomonosov Moscow State University, Moscow, Russia

Accepted: 22.02.2016
DOI: 10.21046/2070-7401-2016-13-2-53-66 

Non-coherent X-band radars are promising tools for monitoring and investigation of surface currents at distances of up to 7 km from the observation point. One of the limiting conditions of their use is the lack of experimentally confirmed investigations of accuracy of such measurements. This article is aims at filling this gap. For radar measurements we used standard navigation radar "River" (Micran) adapted for oceanographic purposes. The radar was installed on the Black Sea shore near Gelendzhik. For radar data processing we used an algorithm presented in (Ivonin et al., 2011), which allows to determine the velocity vector of currents in the case of sea wave heights greater than 1 m. The algorithm draws on works (Young et al., 1986; WaMoS II, 2003) and uses a sequence of amplitude radar images of sea surface acquired in increments of about 2 s. The modulation mechanisms manifest signals from the crests of long surface gravity waves, which becomes visible in radar images. After processing the latter in the spectral space, using the dispersion relation for surface gravity waves one may determine the radial components of current velocity in several directions, and then restore the vector velocity. The verification of the radar measurements of currents was performed by an acoustic Doppler current profiler (ADCP), located at the mooring station at a depth of 23 m, and 1 km away from the radar. The radar sensed the current near ADCP with averaging over the area of 0.5 km × 0.5 km. For a storm event, which lasted 5 days, 23–28 September, 2013, currents with amplitudes of 10 to 80 cm/s were registered. During this period the direction of currents changed by 180°. It was found that the accuracy of the radar measurements with respect to ADCP was 20 cm/s for the amplitude and 20° for the direction. These values are in agreement with the declared characteristics of the oceanographic radars WAMOS II.
Keywords: surface currents, radiowave oceanography, X-band, nautical radar, accuracy of remote measurements, ADCP
Full text

References:

  1. Bass F.G., Fuks I.M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti (Wave scattering from statistically rough surfaces), Moscow: Nauka, 1972, 424 p.
  2. Bulatov M.G., Kravtsov Yu.A., Lavrova O.Yu., Litovchenko K.Ts., Mityagina M.I., Raev M.D., Sabinin K.D., Trokhimovskii Yu.G., Chyuryumov A.N., Shugan I.V., Fizicheskie mekhanizmy formirovaniya aerokosmicheskikh radiolokatsionnykh izobrazhenii okeana (Physical mechanisms of aerospace radar imaging of the ocean), Uspehi fizicheskih nauk, 2003, Vol. 173, No. 1, pp. 69–87.
  3. Bulatov M.G., Raev M.D., Skvortsov E.I. Radiolokatsionnye nablyudeniya nelineinykh volnovykh protsessov v pribrezhnoi zone (Radar observations of nonlinear wave processes in the coastal zone), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 2, No. 3, pp. 50–55.
  4. Garbatsevich V.A., Telegin V.A., Lapshin V.S., Shaboldin N.A., Ivanov I.I., Ivonin D.V., Malogabaritnaya mnogochastotnaya RLS dekametrovogo diapazona dlya monitoringa okeana i ionosfery. Kontseptsii razrabotki i pervye rezul'taty (Compact multi-frequency HF radar to monitor the ocean and the ionosphere. Concept and first results), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 100–106.
  5. Garbatsevich V.A., Lapshin V.S., Telegin V.A., Buzinskii N.L., Shaboldin N.A., Maksimova N.S., Ivanov I.I., Ivonin D.V., RLS dekametrovogo diapazona, prednaznachennaya dlya radiolokatsionnogo monitoringa prirodnykh sred (HF radar designed for monitoring of earth environment), Spetsial'naya tekhnika, 2012, No. 3, pp. 30–34.
  6. Zatsepin A.G., Baranov V.I., Kondrashov A.A., Korzh A.O., Kremenetskiy V.V., Ostrovskii A.G., Soloviev D.M., Submezomasshtabnye vikhri na kavkazskom shel'fe Chernogo morya i porozhdayushchie ikh mekhanizmy (Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation), Oceanology, 2011, Vol. 51, No. 4, pp. 554–567.
  7. Zatsepin A.G., Ostrovskii A.G., Kremenetskiy V.V., Nizov S.S., Piotukh V.B., Soloviev V.A., Moskalenko L.V., Podsputnikovyi poligon dlya izucheniya gidrofizicheskikh protsessov v shel'fovo-sklonovoi zone Chernogo morya (Subsatellite polygon for studying hydrophysical processes in the Black Sea shelf-slope zone), Izvestiya. Atmospheric and Oceanic Physics, 2014, Vol. 50, No. 1, pp. 13–25.
  8. Ivonin D.V., Broch P., Opredelenie tolshchiny rechnogo potoka na priust'evom vzmor'e po izmereniyam doplerovskogo vysokochastotnogo radara (Reconstruction of the Thickness of a Riverine Plume by the Measurements of One Single-Frequency VHF Radar), Oceanology, 2004, Vol. 44, No. 2, pp. 305–312.
  9. Ivonin D.V., Telegin V.A., Azarov A.I., Opredelenie vektora skorosti techeniya po izmereniyam navigatsionnogo radara s shirokoi diagrammoi napravlennosti antenny (Determination of the current velocity by means of a navigation radar with a broad antenna pattern), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 219–227.
  10. Ivonin D.V., Myslenkov S.A., Chernyshov P.V., Kuklev S.B., Sistema monitoringa vetrovogo volneniya v pribrezhnoi zone Chernogo morya na osnove radiolokatsii, pryamykh nablyudenii i modelirovaniya: pervye rezul'taty (Monitoring system of wind waves in coastal area of the Black Sea using coastal radars, direct wave measurements and modeling: First results), Problemy regional'noi ekologii, 2013, No. 4, pp. 172–183.
  11. Kanevsky M.B., O mekhanizmakh formirovaniya RSA-izobrazheniya okeana (On the mechanisms of formation of the SAR images of the ocean), Izv. vysshikh uchebnykh zavedenii. Radiofizika, 2003, Vol. 46, No. 1, pp. 13–20.
  12. Kanevsky M.B., Teoriya formirovaniya radiolokatsionnogo izobrazheniya poverkhnosti okeana (Theory of radar imaging of the ocean surface), Nizhny Novgorod: Institute of Applied Physics, 2004, 64 p.
  13. Raev M.D., Skvortsov E.I., Kombinirovannyi metod radiolokatsionnykh izmerenii parametrov poverkhnostnogo techenii (Combined method of radar measurements of the parameters of the surface currents), Issledovaniya Zemli iz kosmosa, 2015, No. 6, pp. 15–20.
  14. http://www.micran.ru/productions/rls/river/.
  15. Sharkov E.A., Obrushayushchiesya morskie volny: struktura, geometriya, elektrodinamika (The breaking waves of the sea: the structure, geometry, electrodynamics), Moscow: Nauchnyi mir, 2009, 304 p.
  16. Ardhuin F., Marie L., Rascle N., Forget P., Roland A., Observation and Estimation of Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea Surface, J. Phys. Oceanography, 2009, Vol. 39, No. 11, pp. 2820–2838.
  17. Barrick D.E., Lipa B.J., Crissman R.D., Mapping Surface Currents with CODAR, CODAR System Incorporated, 1985, 4 p.
  18. Crombie D.D., Doppler spectrum of sea echo at 13.56 Mc/s, Nature, 1955, Vol. 175, pp. 681–682.
  19. Crombie D.D., Resonant backscatter from the sea and its application to physical oceanography, Proc. IEEE Int. Conf. on Engineering in the Ocean Environment, IEEE New York, 1972, pp. 174–179.
  20. Cui L., He Y., Shen H., Lu H., Measurements of ocean wave and current field using dual polarized X-band radar, Chinese Journal of Oceanology and Limnology, 2010, Vol. 28, pp. 1021–1028.
  21. Ericson E.A., Lyzenga D.R., Walker D.T., Radar backscatter from stationary breaking waves, J. Geophys. Res., 1999, Vol. 104, No. C12, pp. 29679–29695.
  22. Fujii S., Heron M.L., Kim K., Lai J.-W., Lee S.-H., Wu X., Wu X., Wyatt L.R., Yang W.-C., An overview of developments and applications of oceanographic radar networks in Asia and Oceania countries, Ocean Sci. Journal, 2013, Vol. 48, No. 1, pp. 69–97.
  23. Groeneweg J., Gautier C., Swinkels C., van der Westhuysen A., Application of navigation radar data to analyse spatial current and wave fields in the tidal inlet of Ameland, Waves in Shallow Environments (WISE) 2011 Meeting, Qingdao, China, 2011, pp. 1–21.
  24. Guerin C.-A., Soriano G., Chapron B., The weighted curvature approximation in scattering from sea surfaces, Waves in Random and Complex Media, 2010, Vol. 20, No. 3, pp. 364–384.
  25. Gurgel K.W., Antonischki G., Essen H.H., Schlick T., Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing, Coastal Engineering, 1999, Vol. 37, No. 3, pp. 219–234.
  26. Hessner K., Reichert K., Borge J.C.N., Stevens C.L., Smith M.J., High-resolution X-Band radar measurements of currents, bathymetry and sea state in highly inhomogeneous coastal areas, Ocean Dynamics, 2014, Vol. 64, No. 7, pp. 1–10.
  27. Ivonin D.V., Telegin V.A., Bakhanov V.V., Ermoshkin A.V., Azarov A.I., Sample application of a low-cost X-band monitoring system of surface currents at the Black Sea shore, Russ. J. Earth. Sci., 2011, Vol. 12, pp. 1–8.
  28. Kanevsky M.B., Radar imaging of the ocean waves, Oxford: Elsevier, 2008, 207 p.
  29. Kudryavtsev V.N., Hauser D., Caudal G., Chapron B., A semiempirical model of the normalized radar cross-section of the sea surface: 1. Background model, J. Geophys. Res., 2003, Vol. 108, No. C3, pp. 2–24.
  30. Kudryavtsev V.N., Hauser D., Caudal G., Chapron B., A semiempirical model of the normalized radar cross-section of the sea surface: 2. Modulation transform function, J. Geophys. Res., 2003, Vol. 108, No. C3, pp. 25–45.
  31. Nieto Borge, J.C., Guedes C., Analysis of Directional Wave Fields Using X-Band Navigation Radar, Coastal Engineering, 2000, Vol. 40, pp. 375–391.
  32. Plant W.J., A two-scale model of short wind-generated waves and scatterometry, J. Geophys. Res., 1986, Vol. 91, pp. 10735–10749.
  33. http://www.seadarq.com/.
  34. Slunyaev A.V., Sergeeva A.V., Pelinovsky E.N., Modelling of deep-water rogue waves: different frameworks, In: CENTEC Anniversary Book, Marine Technology and Engineering, Taylor & Francis Group, 2012, pp. 199–216.
  35. Stewart R.H., Joy J.W., HF radio measurements of surface currents, Deep Sea Res., 1974, Vol. 21, pp. 1039–1049.
  36. Valenzuela G., Scattering of electromagnetic waves from a tilted slightly rough surface, Radio Science, 1968, Vol. 3, pp. 1057–1066.
  37. Vogelzang J., Vogelzang J., Boogaard K., Reichert K., Hessner K., Wave height measurements with navigation radar, International Archives of Photogrammetry and Remote Sensing, 2000, Vol. 33, No. B7/4, Part 7, pp. 1652–1659.
  38. http://www.oceanwaves.de.
  39. WaMoS II Wave and Surface Current Monitoring System Operating Manual. Version 4.0, OceanWaveS GmbH. Germany, April 2003, 146 p.
  40. Young I., Rosenthal W., Ziemer F., A three–dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents, J. Geophys. Res., 1985, Vol. 90, No. C1, pp. 1049–1059.