ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 107-119

Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data

L.N. Yurganov 1 , I. Leifer 2 , C. Lund Myhre 3 
1 University of Maryland, Baltimore County, Baltimore, USA
2 Bubbleology Research International, Santa-Barbara, USA
3 Norwegian Institute for Air Research, Kjeller, Norway

Accepted: 09.02.2016
DOI: 10.21046/2070-7401-2016-13-2-107-119 

Global increasing of atmospheric methane since 2007–2008 after a decade of its stability requires its investigation and explanation. Locations and nature of growing methane sources are still under discussion. Recent warming of the Arctic stimulated speculations about dissociation of methane hydrates in the Arctic seabed and a new climatic positive feedback. Unfortunately, regular measurements of methane concentrations over the surface of the Arctic Ocean are lacking. Satellite methane retrievals obtained at the Thermal IR (TIR) spectral region are possible year round, day and night. In this paper methane low tropospheric satellite retrievals over the Arctic Ocean from spectrometers using the band near 1300 cm-1 were analyzed. There have been found favorable and unfavorable areas and periods for satellite TIR measurements. Temperature contrast, defined here as the temperature difference between the surface and the altitude of 4 km, was used as a parameter characterizing sensitivity to the lower troposphere: data with the temperature contrast less than 10°C were discarded as unrepresentative for the lower troposphere. Maximal positive methane anomalies were observed along coasts of Norway, Novaya Zemlya, and Spitsbergen in November – December. According to preliminary estimates, the seas of the Western Arctic are responsible for ~68% of total emission from the Arctic Ocean. East Siberian Arctic Shelf (ESAS) contributes ~12% of marine emission in the Arctic. Arctic Ocean methane emission comprise ~68% of the Arctic land emission to the North from 60° N. Satellite data since 2002 do not confirm conclusively a decisive role of the Arctic Ocean sources for the global CH4 acceleration after 2007.
Keywords: AIRS, IASI, Arctic Ocean, atmospheric methane
Full text

References:

  1. Anisimov O.A., Zaboikina Yu.G., Kokorev V.A., Yurganov L.N., Vozmozhnye prichiny emissii metana na shel'fe morei Vostochnoi Arktiki (Possible causes of methane release from the East Arctic seas shelf), Led i Sneg, 2014, No. 2 (126), pp. 69–81.
  2. Anisimov O.A., Kokorev V.A., Sravnitel'nyi analiz nazemnykh, morskikh i sputnikovykh izmerenii metana v nizhnei atmosfere rossiiskoi chasti Arktiki v usloviyakh izmeneniya klimata (Comparative analysis of ground-based, marine, and satellite measurements of methane in the low atmosphere in the Russian Arctic at conditions of changing climate), Issledovanie Zemli iz kosmosa, 2015, No. 2, pp. 1–14.
  3. Portnov A. Private communication, 2016.
  4. Sergienko V.I., Dudarev O.V., Dmitrevskii N.N., Shakhova N.E., Nikol'skii N.N., Nikiforov S.L., Salomatin A.S., Salyuk R.A., Karnaukh V.V., Chernykh D.B., Tumskoi V.E., Chuvilin E.M., Bukhanov B.A., Degradatsiya podvodnoi merzloty i razrushenie gidratov shel'fa morei Vostochnoi Arktiki kak vozmozhnaya prichina «metanovoi katastrofy»: nekotorye rezul'taty kompleksnykh issledovanii 2011 goda (The degradation of submarine permafrost and the destruction of hydrates on the shelf of East Arctic seas as potential cause of the methane catastrophe: some results of integrated studies in 2011), DAN, 2012, Vol. 445, No. 3, pp. 330–335.
  5. AMAP Assessment 2015: Methane as an Arctic climate forcer: Arctic Monitoring and Assessment Programme (AMAP). 2015. Oslo, Norway. 139 p. ISBN – 978-82-7971-091-2.
  6. Archer D., Methane hydrate stability and anthropogenic climate change, Biogeosciences, 2007, Vol. 4, pp. 521–544.
  7. Berchet A., Pison I., Chevallier F., Paris J.-D., Bousquet P., Bonne J.-L., Arshinov M. Y., Belan B. D., Cressot C., Davydov D.K., Dlugokencky E.J., Fofonov A.V., Galanin A., Lavrič J., Machida T., Parker R., Sasakawa M., Spahni R., Stocker B.D., Winderlich J., Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion, Biogeosciences, 2015, Vol. 12, pp. 5393–5414.
  8. Bergamaschi P., Houweling S., Segers A., Krol M., Frankenberg C., Scheepmaker R., Dlugokencky E., Wofsy S., Kort E., Sweeney C., Schuck T., Brenninkmeijer C., Chen H., Beck V., Gerbig C., Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, Journal of Geophysical Research, 2013, Vol. 118, No. 13, pp. 7350–7369.
  9. Damm E., Rudels B., Schauer U., Mau S., Dieckmann G., Methane excess in Arctic surface water-triggered by sea ice formation and melting, Scientific Reports, 2015, Vol. 5, 16179.
  10. Dlugokencky E.J., Nisbet E.G., Fisher R., Lowry D., Global atmospheric methane: Budget, changes and dangers, Philosophical Transactions of the Royal Society A, 2011, Vol. 369, No. 1943, pp. 2058–2072.
  11. Dlugokencky E.J., Lang P.M., Crotwell M., Masarie K.A., Crotwell M.J., Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983–2014, Version: 2015-08-03, Path: ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/, 2015.
  12. Fisher R.E., Sriskantharajah S., Lowry D., Lanoisellé M., Fowler C.M.R., James R.H., Hermansen O., Lund Myhre C., Stohl A., Greinert J., Nisbet-Jones P. B. R., Mienert J., Nisbet E. G., Arctic methane sources: isotopic evidence for atmospheric inputs, Geophysical Research Letters, 2011, Vol. 38, No. 21, L21803.
  13. Frankenberg C., Meirink J. , Bergamaschi P., Goede A., Heimann M., Körner S., Platt U., van Weele M., Wagner T., Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004, Journal of Geophysical Research, 2006, Vol. 111, D07303.
  14. Fung, I., John J., Lerner J., Matthews E., Prather M., Steele L.P., and Fraser P.J., Three-dimensional model synthesis of the global methane cycle, Journal of Geophysical Research, 1991, Vol. 96, No. D7, pp. 13033–13065.
  15. Gentz T., Damm E., von Deimling, J.S., Mau S., McGinnis D.F., Schlüter M., A water column study of methane around gas flares located at the West Spitsbergen continental margin, Continental Shelf Research, 2014, Vol. 72, pp. 107–118.
  16. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P.M. (eds.). Cambridge University Press.
  17. Kort E.A., Wofsy S.C., Daube B.C., Diao M., Elkins J.W., Gao R.S., Hintsa E.J., Hurst D.F., Jimenez R., Moore F.L., Spackman J.R., Zondlo M.A., Atmospheric observations of Arctic Ocean methane emissions up to 82° North, Nature Geoscience, 2012, Vol. 5, No. 5, pp. 318–321.
  18. Razavi A., Clerbaux C., Wespes C., Clarisse L., Hurtmans D., Payan S., Camy-Peyret C., Coheur P., Characterization of methane retrievals from the IASI space-borne sounder, Atmospheric Chemistry and Physics, 2009, Vol. 9, No. 20, pp. 7889–7899.
  19. Rodgers C. Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific: Hackensack, NJ, USA, 2000, 238 p.
  20. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O., Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 2010, Vol. 327, No. 5970, pp. 1246–1250.
  21. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernykh D., Stubbs C., Nicolsky D., Tumskoy V., Gustafsson O., Ebullition and storm-induced methane release from the East Siberian Arctic Shelf, Nature Geoscience, 2014, Vol. 7, No. 1, pp. 64–70.
  22. Tadic J.M., Loewenstein M., Frankenberg C., Butz A., Roby M., Iraci L.T., Yates E.L., Gore W., Kuze A. A, Comparison of In Situ Aircraft Measurements of Carbon Dioxide and Methane to GOSAT Data Measured Over Railroad Valley Playa, Nevada, USA, IEEE Transactions on Geoscience and Remote Sensing, 2014, Vol. 52(12), pp. 7764–7774.
  23. Westbrook G. K., Thatcher K. E., Rohling E. J., Piotrowski A.M., Pälike H., Osborne A. H., Nisbet E. G., Minshull E. A.,Lanoisellé M., James R. H., Hühnerbach V., Green D., Fisher R. E., Crocker A. J., Chabert A., Bolton C., Beszczynska-Möller A., Berndt C., Aquilina A., Escape of methane gas from the seabed along the west Spitsbergen continental margin, Geophysical Research Letters, 2009, Vol. 36, L15608.
  24. Winkelmann D., and Stein R., Triggering of the Hinlopen/Yermak Megaslide in relation to paleoceanography and climate history of the continental margin north of Spitsbergen, Geochemistry, Geophysics, Geosystems, 2007, Vol. 8, No. 6.
  25. Xiong X., Barnet C., Maddy E., Wei J., Liu X., Pagano T., Seven Years’ Observation of Mid-Upper Tropospheric Methane from Atmospheric Infrared Sounder, Remote Sensing, 2010, Vol. 2, No. 11, pp. 2509–2530.
  26. Xiong X., Barnet C., Maddy E., Gambacorta A., King T., Wofsy S., Mid-upper tropospheric methane retrieval from IASI and its validation, Atmospheric Measurement Techniques, 2013, Vol. 6, No. 9, pp. 2255–2265.