ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 84-94

Creating composite maps of ocean surface temperature preserving thermal structures

S.E. Diakov 1 , V.A. Kachur 1 
1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia

Accepted: 09.03.2016
DOI: 10.21046/2070-7401-2016-13-2-84-94 

This article discusses problems associated with creating all-weather compositional maps of sea surface temperature (SST) using satellite data in infrared and microwave spectra. An approach to creating SST maps is proposed based on the principles of preservation of thermal fronts. This approach uses robust methods of temperature estimation from heterogeneous satellite data and additional cloud filtering methods. These filtering methods use maps of spatial and temporal variability of SST values. Procedures for creating maps of spatial and temporal variability are described. The specifics of the chosen approach are discussed, and the technology for its implementation is proposed. A comparison of the accuracy of estimating compositional day-time and night-time OST maps based on a series from 20 images in 2013 is undertaken. It is shown that the accuracy of the maps is 0.7°C, and assessments of the accuracy of one-day compositional maps are given.
Keywords: sea surface temperature, SST composite maps
Full text


  1. Aleksanin A.I., Aleksanina M.G., Zagumennov A.A., Postroyeniye urovennoy poverkhnosti morya po dannym altimetricheskikh izmereny i kartam termicheskikh struktur (Construction of the surface level of the sea According to the data altimetry maps and thermal structures), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2007, Vol. 1, No. 4, pp. 247–253.
  2. Aleksanin A.I., Dyakov S.E., Kross-kalibrovka IK-kanalov sputnika MTSAT-1R i algoritm rascheta temperatury poverkhnosti morya (Cross-calibration of IR-channels MTSAT-1R and algorithm of calculation of sea surface temperature), Issledovaniye Zemli iz kosmosa, 2010, No. 5., pp. 3–10.
  3. Aleksanin A.I., Dyakov S.E., Katamanov S.N., Naumkin Yu.V. Tekhnologiya obrabotki dannykh polyarno-orbitalnykh sputnikov FY-1C/1D dlya monitoringa fizicheskikh poley okeana (Data processing technology FY-1C/1D polar-orbiting satellites for monitoring physical ocean fields), Podvodnye issledovaniya i robototekhnika, 2006, No. 2, pp. 82–91.
  4. Aleksanin A.I., Zagumennov A.A., Avtomaticheskoye vydeleniye vikhrey okeana i raschet ikh formy (Automatic extraction of ocean eddies and eddies form calculation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 2, pp. 17–21.
  5. Aleksanin A.I., Kim V., Kompensatsiya vliyaniya apparatnoy funktsii radiometra AMSR-E na tochnost rascheta TPO (Compensation of the effect of the AMSR-E radiometer hardware functions on the accuracy of calculation of the SST), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 298–203.
  6. Aleksanina M.G., Avtomaticheskoye vydeleniye poverkhnostnykh struktur okeana po infrakrasnym dannym sputnikov NOAA (Automatic extraction of surface structures of the ocean on the infrared data from NOAA satellites), Issled. Zemli iz kosmosa, 1997, No. 3, pp. 44–51.
  7. Ackerman S.A., Strabala K.I., Menzel W.P., Frey R.A., Moeller C.C., Gumley L.E., Discriminating clear sky from clouds with MODIS, Journal of Geophysical Research: Atmospheres (1984–2012), 1998, Vol. 103, No. D24, pp. 32141–32157.
  8. Berk A., Anderson G.P., Bernstein L.S., Acharya P.K., Dothe H., Matthew M.W., Adler-Golden S.M., Chetwynd J.H., Richtsmeier S.C., Pukall B., Allred C.L., Jeong L.S., Hoke M.L., MODTRAN4 radiative transfer modeling for atmospheric correction, SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1999, pp. 348–353.
  9. Casey K.S., Cornillo P., A comparison of satellite and in situ-based sea surface temperature climatologies, Journal of Climate, 1999, Vol. 12, No. 6, pp. 1848–1862.
  10. Donlon C., Robinson I., Casey K.S., Vazquez-Cuervo J., Armstrong E., Arino O., Gentemann C., May D., LeBorgne P., Piollé J., Barton I.J., Beggs H., Poulter D.J.S., Merchant C.J., Bingham A., Heinz S., Harris A., Wick G., Emery B., Minnett P., Evans R., Llewellyn-Jones D., Mutlow C., Reynolds R.W., Kawamura H., Rayner N., The global ocean data assimilation experiment high-resolution sea surface temperature pilot project, Bulletin of the American Meteorological Society, 2007, Vol. 88, No. 8, pp. 1197–1213.
  11. Katamanov S.N. Automatic navigation of one pixel accuracy for meteorological satellite imagery, Proc. 1st Russia and Pacific Conf. on Computer Technology and Applications, Vladivostok, Russia, 2010, pp. 269–274.
  12. Kazansky A.V., Goncharenko I.A., Atmospheric correction of AVHRR imagery, Satellite Remote Sensing of the Oceanic Environment, Tokyo: Seibtsu Kenkyusha, 1993. pp. 56–63.
  13. Martin M., Dash P., Ignatov A., Banzon V., Beggs H., Brasnett B., Cayula J., Cummings J., Donlon C., Gentemann C., Grumbine R., Ishizaki S., Maturi E., Reynolds R.W., Roberts- Jones J., Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE), Deep Sea Research Part II: Topical Studies in Oceanography, 2012, Vol. 77, pp.21–30.
  14. May D.A., Parmeter M.M., Olszewski D.S., McKenzie B.D., Operational processing of satellite sea surface temperature retrievals at the Naval Oceanographic Office, Bulletin of the American Meteorological Society, 1998, Vol. 79, No. 3, pp. 397–407.
  15. McMillin L.M., Crosby D.S. Theory and validation of the multiple window sea surface temperature technique, Journal of Geophysical Research: Oceans (1978–2012), 1984, Vol. 89. No. 3, pp. 3655–3661.
  16. Pichel W., Maturi E., Clemente-Colón P., Sapper J., Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3, International Journal of Remote Sensing, 2001, Vol. 22, No 4, pp. 699–704.
  17. Reynolds R.W., Smith T.M., Improved global sea surface temperature analyses using optimum interpolation, Journal of climate, 1994, Vol. 7, No. 6, pp. 929–948.
  18. Sakaida F., Kawamura H., Takahashi S., Shimada T., Kawai Y., Hosoda K., Guan L., Research and development of the New Generation Sea Surface Temperature for Open Ocean (NGSST-O) product and its demonstration operation, Journal of oceanography, 2009, Vol. 65, No. 6, pp. 859–870.
  19. Chao Y., Li Z., Farrara J.D., Huang P. Blended sea surface temperatures from multiple satellites and in-situ observations for coastal oceans, Journal of Atmospheric and Oceanic Technology. 2009. No. 26 (7), pp. 1435–1446
  20. Shibata A. AMSR/AMSR-E algorithm development and data distribution, Proc. IGARSS 2000, Vol. 1, pp. 59–61.
  21. Shibata A., Imaoka K., Koike T. AMSR/AMSR-E level 2 and 3 algorithm developments and data validation plans of NASDA, Geoscience and Remote Sensing, IEEE Transactions on, 2003, Vol. 41, No. 2, pp. 195–203.
  22. Stowe L.L., Davis P., McClain E.P., Evaluating the CLAVR (clouds from AVHRR) phase I-cloud cover experimental product, Advances in Space Research, 1995, Vol. 16, No. 10, pp. 21–24.
  23. Walton C.C., Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data, Journal of Applied Meteorology, 1988, Vol. 27, No. 2, pp. 115–124.
  24. Walton C.C., Pichel W.G., Sapper J.F., May D.A., The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites, Journal of Geophysical Research: Oceans (1978–2012), 1998, Vol. 103, No. C12, pp. 27999–28012.