ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 192-202

The first attempt to estimate the ion content over the ionosphere using data from the IAR frequency structure

A.S. Potapov 1 , T.N. Polyushkina 1 , A.V. Oinats 1 , A.Yu. Pashinin 1 , T. Raita 2 , B. Tsegmed 3 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 Sodankyla Geophysical Observatory, Sodankyla, Finland
3 Institute of Astronomy and Geophysics MAS, Ulaanbaatar, Mongolia

Accepted: 26.02.2016
DOI: 10.21046/2070-7401-2016-13-2-192-202 

Ionospheric Alfvén resonator (IAR) is located between the lower ionosphere and the transition area from the ionosphere to the plasmasphere (at middle latitudes), or magnetosphere (at high latitudes). Its walls are sharp gradients in plasma concentration below the F2 layer at the bottom and at the height of 0.5–1.5 Earth radii above. The resonator captures Alfvén waves ranging from a fraction of a hertz to about 10 Hz. The dynamic range of the IAR emission has the form of a set of fan-shaped bands with frequency varying in accordance with the change of ionospheric parameters, primarily the plasma concentration in the F2 layer of the ionosphere. In this paper, using the example of spectrograms calculated from the observations of the IAR emissions in the mid-latitudes (Mondy, Eastern Siberia) and in the auroral zone (Sodankylä, Finland), the possibility of obtaining information on the ion composition at altitudes of 2,000 to 6,000 km is shown. The analysis was carried out by comparing the frequency differences ∆f between adjacent harmonics measured from spectrograms with the resonator characteristics calculated on the basis of the IRI-2012 model, extrapolated up to a height of 10,000 km. By selecting coefficients in the extrapolation formulae of ion altitude profiles to achieve a minimum discrepancy between the measured ∆f frequency and its estimate calculated on the basis of the model the profiles of ion composition in the region above the IRI-2012 model limit height, i.e., higher than 2,000 km, were obtained. As a result, the graphics of height variations in relative and absolute concentrations of the three types of ions: oxygen, hydrogen and helium were obtained; changes in altitude profiles of these ions during the transition from daytime to night were followed. Comparison of the profiles obtained for the middle and high latitudes showed a significant difference. For example, if over the obs. Mondy relative content of oxygen ions is close to zero in the entire range of heights, then at high latitudes in the early evening hours, it decreases from over 70% at 2000 km to 20% at an altitude of 4000 km and it slowly falls when approaching the night.
Keywords: ionosphere, IRI-2012 model, ionospheric Alfvén resonator, altitude profile of ion content
Full text

References:

  1. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengertz V.Yu., Obnaruzhenie rezonansnoy strukturyi spektra atmosfernogo elektromagnitnogo shumovogo fona v diapazone korotkoperiodnyih geomagnitnyih pulsatsiy (Detection of a resonant electromagnetic structure of the spectrum of atmospheric noise background in the range of short-period geomagnetic pulsations), Doklady AN SSSR, 1987, Vol. 297, pp. 840–843.
  2. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengertz V.Yu., Teoriya formirovaniya rezonansnoy strukturyi atmosfernogo elektromagnitnogo shumovogo fona v diapazone korotkoperiodnyih geomagnitnyih pulsatsiy (The theory of the formation of the resonance structure of the atmospheric electromagnetic background noise in the range of short-period geomagnetic pulsations), Izv. Vuzov. Radiofizika, 1989, Vol. 32, No. 7, pp. 802–810.
  3. Polyushkina T.N., Dovbnya B.V., Potapov A.S., Tsegmed B., Rakhmatulin R.A., Chastotnaya struktura spektralnyih polos ionosfernogo alvenovskogo rezonatora i parametryi ionosferyi (Frequency structure of the spectral bands of the ionospheric Alfvén resonator parameters of the ionosphere), Geofizicheskiye issledovaniya, 2015, Vol. 16, No. 2, pp. 39–57.
  4. Polyakov S.V., Rapoport V.O., Ionosfernyiy alvenovskiy rezonator (Ionospheric Alfvén resonator), Geomagnetizm i aeronomiya, 1981, Vol. 21, pp. 610–614.
  5. Khabituyev D.C., Shpynev B.G., Variatsii vyisotyi perehoda O /N nad vostochnoy Sibiryu po dannyim Irkutskogo radara NR i PES GPS (Variations of O+/H+ transition height over East Siberia from Irkutsk incoherent scatter data and GPS total electron content), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 107–117.
  6. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengerts V.Y., The ionospheric Alfvén resonator, J. Atmos. Solar-Terr. Phys., 1990, Vol. 52(9), pp. 781–788.
  7. Demekhov A.G., Belyaev P.P., Isaev S.V., Manninen J., Turunen T., Kangas J., Modeling the diurnal evolution of the resonance spectral structure of the atmospheric noise background in the Pc1 frequency range, J. Atmos. Sol. Terr. Phys., 2000, Vol. 62, pp. 257–265, Doi: 10.1016/S1364-6826(99)00119-4.
  8. González S.A., Sulzer M.P., Nicolls M.J., Kerr R.B., Solar cycle variability of nighttime topside helium ion concentrations over Arecibo, J. Geophys. Res., 2004, Vol. 109, A07302, Doi:10.1029/2003JA010100.
  9. Hebden S.R., Robinson T.R., Wright D.M., Yeoman T., Raita T., Bösinger T., A quantitative analysis of the diurnal evolution of ionospheric Alfvén resonator magnetic resonance features and calculation of changing IAR parameters, Ann. Geophys., 2005, Vol. 23, pp. 1711–1721.
  10. Heelis R.A., Coley W.R., Burrell A.G., Hairston M.R., Earle G.D., Perdue M.D., Power R.A., Harmon L.L., Holt B.J., Lippincott C.R., Geophys. Res. Lett., 2009, Vol. 36, L00C03, Doi:10.1029/2009GL038652.
  11. Lysak R.L., Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes, J. Geophys. Res., 2004, Vol. 109, A07201, Doi:10.1029/2004JA010454.
  12. Lysak R.L., Yoshikawa A., Resonant cavities and waveguides in the ionosphere and atmosphere, in Magnetospheric ULF Waves, Geophys. Monogr. Ser., Vol. 169, Ed. K. Takahashi et al., AGU, Washington, D.C., 2006, pp. 289–306.
  13. Potapov A.S., Polyushkina T.N., Dovbnya B.V., Tsegmed B., Rakhmatulin R.A. Emissions of ionospheric Alfvén resonator and ionospheric conditions, J. Atmosph. Solar Terr. Phys., 2014a, Vol. 119, pp. 91–101. Doi: 10.1016/j.jastp.2014.07.001.
  14. Potapov A.S., Polyushkina T.N., Dovbnya B.V., Tsegmed B., Rakhmatulin R.A., Podlesnyi A.V., Frequency structure of IAR spectral bands and parameters of middle and upper ionosphere, Proceedings of General Assembly and Scientific Symposium (URSI GASS), 2014b, XXXIth URSI, pp. 1–4, 16–23 Aug. 2014, Doi: 10.1109/URSIGASS.2014.6929785.
  15. Potapov A.S., Polyushkina T.N., Dovbnya B.V., Use of the International Reference Ionosphere 2012 model to calculate emission frequency scale of the ionospheric Alfvén resonator, J. Space Weather Space Clim., 2015a, Vol. 5, A14, Doi: 10.1051/swsc/2015018.
  16. Potapov A.S., Polyushkina T. N., Oinats A.V., Raita T., Tsegmed B., Adaptation of IRI-2012 model for estimation of IAR harmonic structure, PIERS Proceedings, 2015b, July 6–9, Prague, 2015, pp. 2012–2016.
  17. Truhlik V., Bilitza D., Třiskova L., Towards better description of solar activity variation in the International Reference Ionosphere topside ion composition model, Adv. Space Res., 2015, Vol. 55, pp. 2099–2105, Doi:10.1016/j.asr.2014.07.033.
  18. Yahnin A.G., Semenova N.V., Ostapenko A.A., Kangas J., Manninen J., Turunen T., Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1–4 Hz at L = 5.2, Ann. Geophys., 2003, Vol. 21, pp. 779–786.