ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 9-24

Ice cover on the Sakhalin shelf in the areas of oil production and transportation by satellite microwave sensing

L.M. Mitnik 1 , E.S. Khazanova 1 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

Accepted: 19.01.2016
DOI: 10.21046/2070-7401-2016-13-2-9-24 

Signatures of ice cover distribution on the Sakhalin shelf revealed by analysis of satellite remote sensing data for the period of December 2014 – April 2015 are considered. Application of satellite microwave passive and active (SAR and scatterometers) sensing data for the study of ice condition evolution in the areas of oil deposit and transportation is discussed. The focus is on GCOM-W1 AMSR2 radiometer measurements and Sentinel-1A SAR-C images. To interpret radar signatures, Aqua and Suomi NPP visible and infrared satellite images, MetOp-B scatterometer-derived wind fields and meteorological stations reports were involved. Variations of the structure and characteristics of the marginal ice zone at different wind speeds and directions are shown. Ice conditions around oil platforms and platforms interaction with drifting ice are described. It is shown that joint analysis of the multisensor satellite data allows us to determine ice cover concentration and surface wind speed, to identify ice types and estimate sea ice thickness. The information collected from several satellites increases time resolution, improves forecast of ice conditions and estimates of the impact of Arctic environment on oil platforms.
Keywords: remote sensing, sea ice, Okhotsk Sea, microwave radiometers,GCOM-W1 AMSR2, Sentinel-1ASAR, scatterometers, marginal ice zone, surface winds
Full text

References:

  1. Bekker A.T., Veroyatnostnye kharakteristiki ledovykh nagruzok na sooruzheniya kontinental'nogo shel'fa (Probability characteristics of ice loads on the continental shelf structures), Vladivostok: Dal'nauka, 2005. 346 p.
  2. Vagapov R.Kh., Gavrilo V.P., Kozlov A.I., Lebedev G.A., Logvin A.I., Distantsionnye metody issledovaniya morskikh l'dov (Remote sensing of sea ice), Saint-Petersburg: Gidrometeoizdat, 1993, 341 p.
  3. Gidrometeorologiya i gidrokhimiya morei. Tom IX. Okhotskoe more. Vyp. 1. Gidrometeorologicheskie usloviya (Hydrometeorology and hydrochemistry of seas. Volume IX. The Sea of Okhotsk. Issue 1. Hydrometeorological conditions), Saint-Petersburg: Gidrometeoizdat, 1998, 342 p.
  4. Gidrometeorologiya i gidrokhimiya morei. Tom IX. Okhotskoe more. Vyp. 2. Gidrokhimicheskie usloviya i okeanologicheskie osnovy formirovaniya biologicheskoi produktivnosti (Hydrometeorology and hydrochemistry of seas. Vol. IX. The Sea of Okhotsk. Issue 2. Hydrochemical conditions and oceanographic basis for the biological productivity formation), Saint-Petersburg: Gidrometeoizdat, 1998,168 p.
  5. Dobrovol'skii A.D., Zalogin B.S., Morya SSSR (Sea of USSR), Moscow: MGU, 1982. 192 p.
  6. Darkin D.V., Mitnik L.M., Mitnik M.L., Spektry koeffitsientov izlucheniya tonkogo l’da po dannym mikrovolnovykh i opticheskikh izmerenii so sputnika Aqua na primere Okhotskogo i Yaponskogo morei (Young ice emissivity coefficients spectra derived using Aqua microwave and optical measurements over the Japan and Okhotsk Seas), Issledovanie Zemli iz kosmosa, 2008, No. 1, pp. 3–14.
  7. Lebedev G.A., Paramonov A.I., Opredelenie fizicheskikh kharakteristik morskogo l'da po dannym infrakrasnogo zondirovaniya s ISZ (The physical characteristics of sea ice according to the infrared sensing satellites), Meteorologiya i gidrologiya, 2001, No. 2, pp. 72–80.
  8. Loshchilov V. S, Paramonov A. I., Opredelenie i kartografirovanie tolshchiny morskogo l'da v Arktike po sputnikovym izobrazheniyam v IK-diapazone (Identifying and mapping the thickness of the Arctic sea ice on satellite images in the IR range), Issledovanie Zemli iz kosmosa, 1997, No. 5, pp. 63–72.
  9. Mitnik L.M., Mitnik M.L., Algoritm vosstanovleniya skorosti privodnogo vetra po izmereniyam mikrovolnovogo radiometra AMSR-E so sputnika Aqua (Algorithm of sea surface wind speed retrieval from Aqua AMSR-E measurements), Issledovanie Zemli iz kosmosa, 2011, No. 6, pp. 34–44.
  10. Mitnik L.M., Mitnik M.L., Gurvich I.A., Vykochko A.V., Kuzlyakina Yu.A., Chernyi I.V., Chernyavskii G.M., Mul'tisensornoe sputnikovoe zondirovanie zimnikh tsiklonov so shtormovymi i uragannymi vetrami v severnoi chasti Tikhogo okeana (Multisensor satellite sensing of winter cyclones with storm and hurricane winds in Northern Pacific Ocean), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4., pp. 161–174.
  11. Mitnik L.M., Mitnik M.L., Dubina V.A., Distantsionnoe radiofizicheskoe zondirovanie sistemy okean–atmosfera (Remote sensing of ocean-atmosphere system), In: Dal'nevostochnye morya Rossii. Kniga 4. Fizicheskie metody (Far eastern seas of Russia. Physical methods of research. Book 4), Moscow: Nauka, 2007, pp. 449–537 (628 p.).
  12. Mitnik L.M., Khazanova E.S., Zondirovanie morskogo l'da v Tatarskom prolive sputnikovymi RSA santimetrovogo i detsimetrovogo diapazonov (Sensing of sea ice in the Tatar Strait by satellite C-band and L-band SARs), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 294–302.
  13. Mitnik L.M., Khazanova E.S., Dinamika ledyanogo pokrova v moryakh Vostochno-Sibirskom i Laptevykh po dannym sputnikovogo mikrovolnovogo zondirovaniya vo vtoroi polovine oktyabrya 2014 g. (Ice cover dynamics in the East Siberian and Laptev Seas at the second half of October 2014 from remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, No. 2. pp. 100–113.
  14. Pishchal'nik V.M., Pokrashenko S.A., Leonov A.V., Gal'tsev A.A., Osobennosti razvitiya ledyanogo pokrova Okhotskogo morya v 2001–2006 gg. (Features of ice cover development in the Sea of Okhotsk in 2001-2006), Sbornik statei REAS (Russian Ecological Alliance. Collected papers), 2009, No. 1. pp. 187–195.
  15. Polyakova A.M., K sverkhdolgosrochnomu prognozu ledovitosti dal'nevostochnykh morei (On superlong-term forecasts of the Far East seas ice extent), Vestnik Dal'nevostochnogo otdeleniya RAN, 2012, No. 6, pp. 3–12.
  16. Polyakova A.M., Opasnye i osobo opasnye gidrometeorologicheskie yavleniya v severnoi chasti Tikhogo okeana i tsunami u poberezh'ya Primor'ya (Dangerous and especially dangerous hydrometeorological phenomena in the Northern Pacific and tsunami waves near the Primorye coast), Vladivostok: Dal'nauka, 2012, 182 p.
  17. Tambovskii V.S., Shevchenko G.V., Kharakteristika skorosti dreifa l'da u severo-vostochnogo poberezh'ya ostrova Sakhalin pod vliyaniem prilivov i vetra (Velocity characteristics of wind- and tide-dependent ice drift in the coastal area of northeast Sakhalin), Trudy DVNIGMI, 1999, Vol. 2. pp. 114–137.
  18. Yakunin L.P., Borodachev V.E., Shil'nikov V.I., Ledovaya razvedka na moryakh Dal'nego vostoka (Ice reconnaissance at the Far Eastern seas), In: Istoriya ledovoi aviatsionnoi razvedki (History of the ice reconnaissance aircraft), Saint-Petersburg: Gidrometeoizdat, 2002, pp. 281–308.
  19. Alfullis M.A., Martin S., Satellite passive microwave studies of the Sea of Okhotsk ice cover and its relation to oceanic processes, 1978-1982, J. Geophys. Res., 1987, Vol. 92, No. C12, pp. 13013–13028.
  20. Allison I., Brandt R.E., Warren S.G. East Antarctic sea ice: albedo, thickness distribution and snow cover, J. Geophys. Res., 1993, Vol. 98, No. C7, pp. 12417–12430.
  21. Cavalieri D.J., Gloersen P., Campbell W.J., Determination of sea ice parameters with the NIMBUS 7 SMMR, J. Geophys. Res., 1984, Vol. 89, pp. 5355–5369.
  22. Comiso J., Polar Oceans from Space, N.Y., London: Springer, 2010, 513 p.
  23. Darkin D.V., Mitnik L.M., Dubina V.A., Ice cover of the Okhotsk Sea: a study using ENVISAT ASAR, ERS-2 SAR and AQUA AMSR-E data, Proceedings of 2004 Envisat & ERS Symposium ESA SP-572, Salzburg, 2004.
  24. Dierking W., Mapping of different sea ice regimes using images from Sentinel-1 and ALOS syntactic aperture radar, IEEE Trans. Geosci. Remote Sens., 2007, Vol. 48, No. 3, pp. 1045–1058.
  25. Grenfell T.C., Barber D.G., Fung A.K., Gow A.J., Jezek K.C., Knapp E.J., Nghiem S.V., Onstott R.G., Perovich D.K., Roesler C.S., Swift C.T., Tanis F., Evolution of electromagnetic signatures of sea ice from initial formation through the establishment of thick first-year ice, IEEE Trans. Geosci. Remote Sens, 1998, Vol. 36, No. 5, pp. 1642–1654.
  26. Imaoka K., Kachi M., Fujii H., Murakami H., Hori M., Ono A., Igarashi T., Nakagawa K., Oki T., Honda Y., Shimoda H., Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change, Proc. IEEE, 2010, Vol. 98, No. 5, pp. 717–734.
  27. Mathew N., Heygster G., Melsheimer C., Surface emissivity of the Arctic sea ice at AMSR-E frequencies, IEEE Trans. Geoscience Remote Sensing, 2009, Vol. 47, No. 12, pp. 4115–4124.
  28. Mitnik L.M., Dubina V.A., Darkin D.V., New ice formation in the Okhotsk Sea: Detection with ERS-2 SAR and Envisat ASAR, Proc. 20th International Symposium on Okhotsk Sea and Sea Ice, Mombetsu, 2005, pp. 37–44.
  29. Mitnik L.M., Kalmykov A.I. Structure and dynamics of the Sea of Okhotsk marginal ice zone from “Ocean” satellite radar sensing data, J. Geophys. Res., 1992, Vol. 97, pp. 7429–7445.
  30. Mitnik L.M., Mitnik M.L., AMSR-E advanced wind speed retrieval algorithm and its application to marine weather systems, Proc. IGARSS 2010, Hawaii, 2010, pp. 3224–3227.
  31. Onstott R.G., Shuchman R.A., SAR measurements of ice, In: Synthetic Aperture Radar marine user’s manual, US Department of commerce, 2004, pp. 81–115.
  32. Perovich D.K., The optical properties of sea ice, Vol. 96-1, CRREL Monogr., 1996. 25 p.
  33. Schulz-Stellenfleth J., Lehner S. Spaceborne synthetic aperture radar observations of ocean waves traveling into sea ice, J. Geophys.Res., 2002, Vol. 107, No. C8, pp. 20-1–20-19.
  34. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res. Oceans, 2008, Vol. 113, No. C02S03, pp. 1–14.
  35. Wadhams P., Squire V.A., Goodman D.J., Cowan A.M., Moore S.C., The attenuation rates of ocean waves in the marginal ice zone, J. Geophys.Res., 1988, Vol. 93, No. C6, pp. 6799–6818.
  36. Weber J.E., Wave drift and wave attenuation in the marginal ice zone, J. Phys. Oceanography, 1987, Vol. 17, pp. 2352–2361.
  37. Zabolotskikh E.V., Mitnik L.M., Chapron B., New approach for severe marine weather study using satellite passive microwave sensing, Geophys. Res. Lett., 2013, Vol. 40, No. 13, pp. 3347–3350.