ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 176-191

Forecast of Saint-Petersburg and Kiev thermal replies on climate change (on the basis of EOS and Landsat satellite imagery)

V.I. Gornyy 1 , V.I. Lyalko 2 , S.G. Kritsuk 1 , I.Sh. Latypov 1 , A.A. Tronin 1 , V.E. Filippovich 2 , S.A. Stankevich 2  , O.V. Brovkina 3  , A.V. Kiselev 1 , T.A. Davidan 1 , N.S. Lubsky 2 , A.B. Krylova 2 
1 Saint Petersburg Scientific-Research Centre for Ecological Safety RAS, Saint Petersburg, Russia
2 Scientific Centre for Aerospace Research of the Earth IGS NAS of Ukraine, Kiev, Ukraine
3 Global Change Research Institute (CzechGlobe), Brno, Czech Republic

Accepted: 18.01.2016
DOI: 10.21046/2070-7401-2016-13-2-176-191 

The paper attempts to predict surface temperatures of the urban environment of Kiev and St. Petersburg that can be expected in 2024 if the observed trend of warming will continue. The archival materials of satellite infrared thermal survey performed by the EOS and Landsat satellites were used. Time series of urban surface temperature (UST) for a long period (from 1984 to 2014) were compiled from those data and UST trends were calculated. A forecast of the expected average and maximum UST was done. As a result, in Kiev in July–August of 2024 the average noon time UST should be expected at +30.6°C ÷ +31.6°C and for the hottest days +41.6°C with maximal UST in certain locations of +51.0°C. Accordingly, in St.-Petersburg the average noon time UST can be +28°C (increasing by +3.0°C), for the hottest days +37.0°C with maximal UST in certain locations of +45.1°C. The upper UST estimations for Kiev and Saint-Petersburg hold quite high values, accordingly, 56.6°C and 50.4°C. It is shown that the multi-year trend of average UST is a reliable quantitative characteristic of the accumulated volumes of building industry activity. Therefore, it is a scientific basis for application of satellite infrared-thermal data for monitoring the building industry activity. It is also shown that surface temperature is a reliable indicator of deforestation. Thus, infrared-thermal satellite monitoring can be used for environmental control of forested areas.
Keywords: urban area, “heat island”, climate, warming, satellite, temperature, time series, forecast, heating, building industry, deforestation
Full text

References:

  1. Baldina E.A., Grishchenko M.Yu., Issledovanie "teplovogo ostrova" Moskvy po raznosezonnym snimkam Landsat 7/ETM+ (“Heat Island” of Moscow Investigation by using multi-time images of Landsat 7/ETM+), Geoinformatika, 2011, No. 3, pp. 62–69.
  2. Bol’shev L.N., Smirnov N.V., Tablitsy matematicheskoi statistiki (Tables of mathematical statistics), Moscow: Nauka, 1983, 416 p.
  3. Busygin B. S., Garkusha I. N., Geoinformatsionnaya tekhnologiya temperaturnogo kartografirovaniya gorodov po dannym kosmicheskikh s’emok (Geoinformative technology of urban areas temperature mapping by using results of satellite survey), GeoInformatics, 2012, 14 May. http://www.earthdoc.org/publication/publicationdetails/?publication=66439 (November 01, 2015).
  4. Varentsov M.I., Konstantinov P.I., Samsonov T.E., Repina I.A., Izuchenie fenomena gorodskogo ostrova tepla v usloviyakh polyarnoi nochi s pomoshch'yu eksperimental'nykh izmerenii i distantsionnogo zondirovaniya na primere Noril'ska (Investigation of the urban heat island phenomenon during polar night based on experimental measurements and remote sensing of Norilsk city), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 329–337.
  5. http://www.kiev.ukrstat.gov.ua (November 01, 2015).
  6. Vtoroi otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (The second evaluation report about climate change at the territory of Russian Federation), Rosgidromet, Moscow, 2014, 61 p.
  7. Gornyy V.I., Kritsuk S.G., Latypov I.Sh., Tronin A.A., Shilin B.V., Distantsionnyi izmeritel'nyi monitoring teplopoter' gorodskikh i promyshlennykh aglomeratsii (na primere St-Peterburga i Khel'sinki) (Remote measuring monitoring of urban and industrial heat losses (on the example of Saint-Petersburg and Helsinki), Teploeffektivnye tekhnologii. Informatsionnyi byulleten', No. 2, 1997, pp. 17–23.
  8. United Nations Framework Convention on Climate Change (UNFCCC) (2011), Conference of the Parties – Sixteenth Session: Decision 1/CP.16: The Cancun Agreements: Outcome of the work of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention, 2012, 106 p.
  9. http://unfccc.int/resource/docs/2011/cop17/rus/09a01r.pdf (November 01, 2015). (http://www.complexdoc.ru/ntdtext/537016) (November 01, 2015).
  10. Krylova A. B., Monitoring formirovaniya i razvitiya “teplovogo ostrova” goroda Kieva (Monitoring of “Heat Island” of Kiev formation and development), Ukraїns'kii zhurnal distantsіinogo zonduvannya Zemlі, No. 2, 2014, pp. 35–37.
  11. Labutina I.A., Baldina E.A., Grishchenko M.Yu., Khaibrakhmanov T.S., Opyt ispol'zovaniya kosmicheskikh snimkov pri ekologicheskikh issledovaniyakh territorii Moskvy (Experience of satellite images application on environmental investigations of Moscow territory), Zemlya iz kosmosa: naibolee effektivnye resheniya, 2012, Issue 12, pp. 50–55.
  12. Marchenko M.I., Klassifikatsiya entomofauny trupa. Biologiya mukh i ikh sudebno-meditsinskoe znachenie (Classification of entomofauna of cadaver. Biology of flies and their medical value), Sudebno-meditsinskaya ekspertiza, 1980, No. 2, pp. 17–20.
  13. Stankevich S.A., Filippovich V.E., Lubskii N.S., Krylova A.B., Kritsuk S.G., Brovkina O.V., Gornyy V.I., Tronin A.A., Interkalibratsiya metodov vosstanovleniya termodinamicheskoi temperatury poverkhnosti urbanizirovannoi territorii po materialam teplovoi kosmicheskoi s’emki (Intercalibration of methods for the land surface thermodynamic temperature retrieving inside urban area by thermal-infrared satellite imaging), Ukraїns'kii zhurnal distantsіinogo zonduvannya Zemlі, 2015, No. 7, pp. 14–23.
  14. http://sofgi.ru/upload/iblock/da0/da06323218e019c287bcc521021814ed.pdf. (November 01, 2015).
  15. Shalabanov A.K., Roganov D. A., Ekonometrika (Econometrics), Kazan': TISBI, 2002, 56 p.
  16. Cai G., Du M., Xue Y., Monitoring of urban heat island effect in Beijing combining ASTER and TM data, International Journal of Remote Sensing, 2011, Vol. 32, No. 5, pp. 1213–1232.
  17. Price J.C., Assessment of the Urban Heat Island Effect Through the Use of Satellite Data, Monthly Weather Review, 1979, Vol. 107, No. 11, P. 1554–1557. doi: http://dx.doi.org/10.1175/1520-0493(1979)107<1554:AOTUHI>2.0.CO;2 (November 01, 2015).
  18. Yonghong Hu, Gensuo Jia, Christine Pohl, Qiang Feng, Yuting He, Hao Gao, Ronghan Xu, John van Genderen, Jinming Feng, Improved monitoring of urbanization processes in China for regional climate impact assessment, Environmental Earth Sciences, June 2015, Vol. 73, No. 12, pp. 8387–8404.