ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 132-149

Simple optical model of clear sky and cloudy atmosphere for calculation of solar irradiance

A.S. Ginzburg 1 , I.N. Melnikova 2 , D.A. Samulenkov 2 , M.V. Sapunov 2 , L.V. Katkovsky 3 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 St. Petersburg State University, St. Petersburg, Russia
3 A.N. Sevchenko Institute of Applied Physical Problems of Belarusian State University , Minsk, Belarus

Accepted: 05.02.2016
DOI: 10.21046/2070-7401-2016-13-2-132-149 

Simple optical models of cloudless and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed: solid aerosol particles are between water droplets. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated with regard to the molecular absorption bands in the short wavelength range of 0,3-0,9 µm. Molecular bands are simulated with triangle function. A comparison of the proposed values of optical parameters with results of the various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is accomplished. It is shown that the values of optical parameters correspond to the values obtained from processing the results of airborne observations of the irradiance and radiance of solar radiation at different altitudes in the atmosphere. For a cloudy atmosphere models for single-layer and two-layer atmosphere are presented. It is found that cloud optical parameters assumed for the “external mixture” agree well with values obtained from airborne observations and retrievals. The proposed optical models provide acceptable accuracy, which is clear from comparisons between the measured and retrieved values of optical parameters.
Keywords: atmospheric aerosols, cloud, optical thickness, single scattering albedo, optical model, volume extinction coef-ficient, volume absorption coefficient, lidar sounding
Full text

References:

  1. Vasil'ev A.V., Ivlev L.S., Ob opticheskikh svoistvakh zagryaznennykh oblakov (To optical properties of polluted clouds), Optika atmosfery i okeana, 2002, Vol. 15, No. 2, pp. 157–159.
  2. Vasil'ev A.V., Melnikova I.N., Korotkovolnovoe solnechnoe izluchenie v atmosfere Zemli. Raschety. Interpretatsiya. Izmereniya (Short-wave solar radiation in the atmosphere of the Earth. Calculation. Interpretation. Measurements), Saint-Petersburg: NIIKh SPbGU, 2002, 388 p.
  3. Ginzburg A.S., Gubanova D.P., Minashkin V.M., Vliyanie estestvennykh i antropogennykh aerozolei na global'nyi i regional'nyi klimat (Impact of natural and anthropogenic aerosols on global and regional climate), Rossiiskii khimicheskii zhurnal, 2008, Vol. 52, No. 5-C, pp. 112–119.
  4. Ginzburg A.S., Romanov S.V., Fomin B.A., Ispol'zovanie radiatsionno-konvektivnoi modeli dlya otsenki temperaturnogo potentsiala parnikovykh gazov (The Radiation-convection model for estima-tion of the temperature potential of greenhouse gases), Izvestiya RAN. Fizika atmosfery i okeana, 2008, Vol. 44, No. 3, pp. 324–331.
  5. Grishechkin V.S., Shul'ts E.O. Melnikova I.N., Analiz spektral'nykh radiatsionnykh kharakteristik (Analysis of spectral radiative characteristics), LGU. Problemy fiziki atmosfery, 1989, Iss. 20, pp. 32–42.
  6. Donchenko V.K., Samulenkov D.A., Melnikova I.N., Boreisho A.S., Chugreev A.V., Lazernye sistemy Resursnogo Tsentra SPbGU. Vozmozhnosti, postanovka zadach i pervye rezul'taty (Laser com-plexes of the Resources Center of St. Petersburg State Uiversity. Problem statement and first results), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 122–134.
  7. Ivlev L.S., Vasil'ev A.V., Belan B.D., Panchenko M.V., Terpugova S.A., Optiko-mikrofizicheskie modeli gorodskikh aerozolei (Optical-microphysical models of urban aerosols), Tret'ya mezhdu-narodnaya konferentsiya “Estestvennye i antropogennye aerozoli” (The third international con-ference ”Natural and anthropogenic aerosols”), Ed. L.S. Ivlev, Saint-Petersburg: NII Khimii SPbGU, 2003, pp. 161–170.
  8. Lobanova M.A., Vasil'ev A.V., Melnikova I.N., Zavisimost' parametra indikatrisy rasseyaniya ot kharakteristik sredy (Dependence of the phase function parameter on medium characteristics), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No 4, pp. 147–157.
  9. Melnikova I.N., Opticheskaya model' oblachnosti, poluchennaya iz samoletnykh spektral'nykh izme-renii korotkovolnovoi solnechnoi radiatsii (Optical model of cloudiness obtaining from airborne spec-tral observations of short-wave solar radiation), Optika atmosfery i okeana, 2001, Vol. 14, No. 8, pp. 710–721.
  10. Melnikova I.N., Opticheskaya model' odnorodnoi atmosfery dlya rascheta kharakteristik solnechnoi radiatsii v usloviyakh bezoblachnoi i oblachnoi atmosfery (Optical model of homogeneous atmosphere for calculation of characteristics under condition clear and cloudy atmosphere), In: Estestvennye i antropogennye aerozoli (Natural and anthropogenic aerosols), Saint-Petersburg, 2011, pp. 210–221.
  11. Melnikova I.N., Spektral'nye opticheskie parametry oblachnykh sloev. Prilozhenie k eksperimental'nym dannym. Chast' II. (Spectral optical parameters of cloud layers. Application to the experimental data. Part II), Optika atmosfery i okeana, 1992, Vol. 5, No. 2, pp. 178–185.
  12. Mel'nikova I.N., Vasil'ev A.V., Kuznetsov A.D., Praktikum po uchebnym distsiplinam: "Dis-tantsionnoe zondirovanie okruzhayushchei sredy iz kosmosa", "Teoriya perenosa elektro-magnitnogo izlucheniya v atmosfere" (Workshop manuals: "Remote Sensing of the Environment from Space", "The theory of electromagnetic radiation transfer in the atmosphere"), Voenmekh, 2008.
  13. Mikhailov E.F., Vlasenko S.S., Struktura i opticheskie svoistva sazhevykh aerozolei vo vlazhnoi atmosfere: 2. Vliyanie gidrofil'nosti chastits na koeffitsienty oslableniya, rasseyaniya i pogloshcheniya (Structure and optical properties of soot aerosols in humid atmosphere: 2. Impact of hydrophilic parti-cles on coefficients of extinction, scattering and absorption), Izvestiya RAN. Fizika atmosfery i okeana, 2007, Vol. 43, No. 2, pp. 221–233.
  14. Radiatsionnye kharakteristiki atmosfery i zemnoi poverkhnosti (Radiation characteristics of the atmosphere and earth surface), Ed. K. Ya. Kondrat'ev, Leningrad: Gidrometeoizdat, 1969, 564 p.
  15. Radionov V.F., Sakunov G.G., Grishechkin V.S., Spektral'noe al'bedo zasnezhennoi poverkhnosti po izmereniyam na dreifuyushchei stantsii SP-22 (Spectral albedo of snow surface from observations at drifting Arctic station), Pervyi global'nyi eksperiment PIGAP. 2. Polyarnyi aerozol', protyazhenna-ya oblachnost' i radiatsiya, Leningrad: Gidrometeoizdat, 1981, pp. 89–91.
  16. Chubarova N.E., Gorbarenko E.V., Nezval' E.I., Shilovtseva O.A., Aerozol'nye i radiatsionnye kharak-teristiki atmosfery vo vremya lesnykh i torfyanykh pozharov v 1972, 2002 i 2010 gg. v Podmoskov'e (Aerosol and Radiative characteristics of the atmosphere during forest and peat fires in 1972, 2002 and 2010 years in Moscow suburbs), Izvestiya RAN. Fizika atmosfery i okeana, 2011, Vol. 47, No. 6. pp. 790–804.
  17. Ackerman T.P., Flynn D.M., Marchand R.T., Quantifying the magnitude of anomalous solar absorp-tion, J. Geophys. Res., 2003, Vol. 108, No. D9, pp. 4273–4396, doi:10.1029/2002JD002674.
  18. Arking A., Absorption of solar energy in the atmosphere: Discrepancy between a model and observa-tions, Science, 1996, Vol. 273, pp. 779–782.
  19. Asano S., Cloud and Radiation Studies in Japan. Cloud Radiation Interactions and Their Parametriza-tion in Climate Models, WCRP-86 WMO/TD, Geneva. WMO, 1994, No. 648, pp. 72–73.
  20. Chubarova N., Nezval' Ye., Sviridenkov I., Smirnov A., Slutsker I., Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010, Atmos. Meas. Tech, 2012, Vol. 5, No. 20, pp. 557–568, doi:10.5194/amt-5-557-2012.
  21. Donchenko V., Melnikova I., Samulenkov D., First results of lidar sounding of the atmosphere in the Sankt-Petersburg State University, 3rd Joint ACTRIS WP2/WP20 and EARLINET Workshop Cyprus University of Technology, Limassol, Cyprus, 2013.
  22. Dubovik O., Holben B.N., Eck T.F., Smirnov A., Kaufman Y.J., King M.D., Tanré D., Slutsker I., Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci, 2002, Vol. 59, No. 3, pp. 590–608.
  23. Gatebe Ch., Kuznetsov A., Melnikova I., Cloud optical parameters from airborne observation of diffuse solar radiation accomplished in USA and USSR in different geographical regions, International Journal of Remote Sensing, 2014, Vol. 35, No. 15, pp. 5812–5829. DOI:10.1080/01431161.2014.945000
  24. Ishizaka Y., Adhikari M., Kazaoka R., Khatri P., Minda H., Aryal D., Takahashi T., Takasu K., J Jansen. B., Gras J. L., Okada K., The effect of air-pollutants on the microphysical properties of clouds over the sea off the southwest of Kyushu in Japan, Findings and Current Problems in the Asian Particle Environmental Chang Studies 2003, JST/CREST/APEX 2003 Interim Report, Tokyo, 2003, pp. 103–116.
  25. Kim Y.M., Kim Jh., Cho H.K., Lee Y.G., Koo J.H., Kim Y.J., The dependence of the surface solar irradiance on cloud and Aerosol, Current Problems in Atmospheric Radiation (IRS 2008), Ed. by T. Nakajima and M. A. Yamasoe, American Institute of Physics, 2009, pp. 545–548.
  26. Kokhanovsky A.A., von Hoyningen-Huene W., Rozanov V.V., Noël S., Gerilowski K., Bovensmann H., Bramstedt K., Buchwitz M., Burrows J.P., The semianalytical cloud retrieval algorithm for SCIAMACHY II. The application to MERIS and SCIAMACHY data, Atmos. Chem. Phys. Discuss., 2006, Vol. 6, No. 12, pp. 1813–1840.
  27. Kondratyev, K.Ya., Varotsos C., Atmospheric Ozone Variability: Implications for Climate Change, Human Health and Ecosystems, Springer-Praxis, Chichester, UK, 2000, 617 p.
  28. Lindfors A., Arola A., On the wavelength-dependent attenuation of radiation in the UV-visible range by a homogeneous cloud layer, Current Problems in Atmospheric Radiation (IRS 2008), Ed. T. Nakajima and M. A. Yamasoe, 2009, American Institute of Physics, pp. 61–63.
  29. Marshak A., Wen G., Coakley, Jr. A. J., Remer A. L., Loeb G. N., Cahalan F., A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds, J. Geophys. Res., 2008, Vol. 113, No. D14, pp. 17, doi:10.1029/2007JD009196.
  30. Mayer B., Kylling A., Madronich S., Seckmeyer G., Enchanced absorption of UV radiation due to multiple scattering in clouds: Experimental evidence and theoretical explanation, J. Geophys. Res., 1998, Vol. 103, No. D23, pp. 31241–31254.
  31. Kuznetsov A., Melnikova I. Pozdnyakov D., Seroukhova O., Vasilyev A., Remote Sensing of the Environment and Radiation Transfer. An Introductory Survey, Springer-Verlag Berlin, Heidelberg, 2011.
  32. Petters J.L., Saxena V.K., Slusser J.R., Wenny B.N., Madronich S., Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model, J. Geophys. Res., 2003, Vol. 108, No. D9, pp. 4288. doi:10.1029/2002JD002360.
  33. Ramanathan V., Subasilar B., Zhang G.J., Conant W., Cess R.D., Kiehl J.T., Grassl G., Shi L., Warm Pool Heat Budget and Shortwave Cloud Forcing: a Missing Physics?, Science, 1995, Vol. 267, No. 5196, pp. 500–503.
  34. Reidmiller D.R., Hobbs P.V., Kahn R., Aerosol Optical Properties and Particle Size Distributions on the East Coast of the United States Derived from Airborne In Situ and Remote Sensing Measurements, J. Atmos. Sci., 2006, Vol. 63, No. 3, pp. 785–814.
  35. Sano I., Mukai S., Okada Y., Takamura T., Holben B.N., Optical properties of aerosols over Japan during APEX experiments, Findings and Current Problems in the Asian Particle Environmental Change Studies: 2003, JST/CREST/APEX 2003 Interim Report, Tokyo, 2003, pp. 75–85.
  36. Sokolik I.N., Toon O.B., Incorporation of mineral composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths, J. Geophys. Res., 1999, Vol. 104, No. D8, pp. 9423–9444.
  37. Stephens G.L., Optical properties of eight water cloud types, Technical Paper of CSIRO. Atmosph. Phys. Division, Aspendale. Australia, 1979, No. 36, pp. 1–35.
  38. Taylor J.P., Edwards J.M., Glew M.D., Hignett P., Slingo A., Studies with a flexible new radiation code. II. Comparison with aircraft short-wave observations, Q.J.R. Meteorol. Soc., 1996, Vol. 122, No. 532, pp. 839–861.
  39. Varotsos C.A., Melnikova I.N., Cracknel A.P., Tzanis C., Vasilyev A.V., New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations, Atmospheric Chemistry and Physics, 2014, Vol. 14, No. 13, pp. 6953–6965.