ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 34-43

Impact of mesoscale eddies on sea surface temperature in the North Pacific Ocean

A.A. Kubryakov 1, 2 , T.V. Belonenko 2 , S.V. Stanichny 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Saint-Petersburg State University, Saint-Petersburg, Russia

Accepted: 22.02.2016
DOI: 10.21046/2070-7401-2016-13-2-34-43 

Automatic eddy identification based on satellite altimetry and sea surface temperature (SST) data are used to quantify the impact of mesoscale eddies on the SST anomalies in the North Pacific Ocean. The spatial distribution of SST anomalies in cyclonic (CE) and anticyclonic eddies (AE) is significantly heterogeneous. The anomalies of SST are mostly positive in the AE and negative or close to zero in CE. The magnitudes of the anomalies are significantly higher in AE than in CE. The maximum values of the anomalies are observed in the rings of Kuroshio and near the Aleutian and Kuril Islands. It is shown that on average SST anomalies are constantly decreasing during eddy’s lifetime from 0.12° to 0.08°C in AE and from -0.02° to 0°C in CE, which is probably related to the divergent movements or trapping of water masses at the time of vortex formation. There is a direct relationship between the orbital velocity of vortices and SST anomalies since the largest anomalies are observed in the most intensive vortices. The composite analysis is used to compute the average distribution of SST anomaly in CE and AE, which shows that the main effect of the vortices is related to horizontal advection by eddy orbital velocities.
Keywords: Pacific Ocean, mesoscale eddies, eddy dynamics, eddy transport, heat transport, satellite altimetry, sea surface temperature
Full text

References:

  1. Belonenko T.V., Zaharchuk E.A., Fuks V.R. Volny ili vihri? (Waves or eddies?) Vestnik SPbGU, 1998, Vol. 7, No. 21, pp. 37–44.
  2. Belonenko T.V., Zaharchuk E.A., Fuks V.R. Gradientno-vihrevye volny v okeane (Gradient-vortex waves in the ocean), SPb.: Izd-vo SPBGU, 2004, p. 215.
  3. Kamenkovich V.M., Koshliakov M.N., Monin A.S. Sinopticheskie vihri v okeane (Synoptic eddies in the ocean), 1987, 264 p.
  4. Kubryakov A.A., Stanichnyi S.V. Dinamika Batumskogo antitsiklona po sputnikovym dannym (Dynamics of Batumi anticyclone from satellite data), Morskoi Gidrofizicheskii Zhurnal, 2015, No. 2, pp. 1–11.
  5. Bashmachnikov I., Boutov D., Dias J. Manifestation of two meddies in altimetry and sea-surface temperature, Ocean Science, 2013, Vol. 9, No. 2, pp. 249–259.
  6. Chaigneau A., Gizolme A., Grados C., Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns, Progress In Oceanography, 2008, No. 79, Vol. 2–4, pp. 106–119.
  7. Ginzburg A.I., Kostianoy A.G., Nezlin N.P., Soloviev D.M., Stanichny S. Anticyclonic eddies in the northwestern Black Sea, J. Mar. Syst., 2002, Vol. 32, No. 1, pp. 91–106.
  8. Shapiro G.I., Stanichny S.V., Stanychna R.R. Anatomy of shelf–deep sea exchanges by a mesoscale eddy in the North West Black Sea as derived from remotely sensed data, Remote Sensing of Environment, 2010, Vol. 114, No. 4, pp. 867–875.
  9. Chelton D.B., Schlax M.G., Samelson R.M., de Szoeke R.A. Global observations of large oceanic eddies. Geophysical Research Letters, 2007, Vol. 34, No. 15, pp. 1–5.
  10. Chelton D.B., Gaube P., Schlax M.G., Early J.J., Samelson R.M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll, Science, 2011, Vol. 334, No. 6054, pp. 328–332.
  11. Kubryakov A.A., Stanichny S.V. (a) Mesoscale eddies in the Black Sea from satellite altimetry data, Oceanology, 2015, Vol. 1, No. 55, pp. 5667.
  12. Kubryakov A.A., Stanichny S.V. (b) Seasonal and interannual variability of the Black Sea eddies and its dependence on characteristics of the large-scale circulation, Deep Sea Research Part I: Oceanographic Research Papers, 2015, Vol. 97, pp. 80–91.
  13. Lehahn Y., d'Ovidio F., Lévy M., Amitai Y., Heifetz E. Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring, Geophysical Research Letters, 2011, Vol. 38, No. 16.
  14. McGillicuddy D.J., Robinson A.R., Siegel D.A., Jannasch H.W., Johnson R., Dickey T.D., Knap A.H. Influence of mesoscale eddies on new production in the Sargasso Sea, Nature, 1998, Vol. 394, No. 6690, pp. 263–266.
  15. Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., Schlax M.G. Daily high-resolution-blended analyses for sea surface temperature, Journal of Climate. 2007, Vol. 20, No. 22, pp. 5473–5496.
  16. Rio M. H., Guinehut S., Larnicol G. New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. Journal of Geophysical Research, 2011, Vol. 116, No. C7.
  17. Sadarjoen A., Post F.H., Detection, quantification, and tracking of vortices using streamline geometry, Visualization and Computer Graphics, 2000, No. 24, pp. 333-341.
  18. Siegel D.A., Peterson P., McGillicuddy D.J., Maritorena S., Nelson N.B. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea, Geophysical Research Letters, 2011, Vol. 38, No. 13.