ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 95-104

Calibration and validation as prerequisite components of satellite microwave radiometer measurements from Meteor-M No. 2 series satellites

L.M. Mitnik 1 , M.L. Mitnik 1 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia

Accepted: 04.01.2016
DOI: 10.21046/2070-7401-2016-13-1-95-104
 

Features and organization of works are considered on internal and external calibration of multichannel microwave scanning radiometers SSM/I and SSMIS (USA) and AMSR - E and AMSR2 (Japan). Performances of MTVZA-GY radiometer are presented and the necessity of the use of foreign experience at its calibration is marked. The problems of external calibration from sensing data obtained over the cold and hot areas of the Earth are discussed. For these areas the brightness temperatures TB(ν) at radiometer frequencies ν should be computed with the use of the current program of microwave radiative transfer in the underlying surface - atmosphere system. As cold areas, the cloudless ocean regions at weak wind can be chosen, and as hot ones - are broadleaved Amazon rain-forests. Stability of radiometer operation on an orbit can be controlled by analysis of the TB(ν) time series acquired over extensive homogeneous spaces of the Antarctic plateau in the Dome C area. Information about the meteorological regime of this area, about a temperature and snow parameters and results of microwave measurements are given. For the receipt of valuable operative and scientific information from Meteor-M No. 2 MTVZA-GY data and subsequent satellites, planned to the launch in 2016-2021, the cycle of works on radiometer calibration must be performed, algorithms are worked out and products validation carried out, including ground truth measurements in different physico-geographical conditions.
Keywords: remote sensing, microwave radiometry, calibration, validation, Meteor-M No. 2, MTVZA-GY, algorithms, Dome C, test areas
Full text

References:

  1. Asmus V.V., Krovotyntsev V.A., Makridenko L.A., Milekhin O.E., Solov'ev V.I., Uspenskii A.B., Frolov A.V., Khailov M.N. Novyi operativnyi meteorologicheskii sputnik “Meteor-M” No. 2 (New operation meteorological satellite "Meteor-M" No. 2), Mezhdunar. simpozium po atmosfernoi radiatsii i dinamike (MSARD–2015) (Abstracts of International Symposium Atmopsheric Radiation Dynamics), Saint-Petersburg - Petrodvorets, 23–26 June 2015, pp. 7–8.
  2. Basharinov A.E., Gurvich A.S., Egorov S.T., Radioizluchenie Zemli kak planety (Microwave Emission of the Earth as a Planet), Moscow: Nauka, 1974, 187 p.
  3. Boldyrev V.V., Gorobets N.N., Il'gasov P.A., Nikitin O.V., Pantsov V.Yu., Prokhorov Yu.N., Strel'nikov N.I., Strel'tsov A.M., Chernyi I.V., Chernyavskii G.M., Yakovlev V.V., Sputnikovyi mikrovolnovyi skaner/zondirovshchik MTVZA-GYa (Satellite microwave scanner/sounder), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 1, pp. 243–248.
  4. Mitnik L.M., Kuleshov V.P., Mitnik M.L., Mikrovolnovye kharakteristiki Antarkticheskogo plato po izmereniyam so sputnikov Meteor-M № 2 i GCOM-W1 (Microwave characteristics of Antarctic plateau from Meteor-M № 2 and GCOM-W1 satellites measurements), Tezisy, Trinadtsataya Vserossiiskaya otkrytaya konferentsiya Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa (13-th All-Russia Open Conference "Current Problems of Remote Sensing Earth From Space, Abstracts), Moscow, IKI RAN, 2015a, p. 289.
  5. Mitnik M.L., Mitnik L.M., Vosstanovlenie parosoderzhaniya atmosfery i vodozapasa oblakov nad okeanom po dannym mikrovolnovogo zondirovaniya so sputnikov DMSP, TRMM, AQUA i ADEOS-II (Retrieval of total atmospheric water vapor content and total cloud liquid water content over the ocean from microwave sensing data taken by DMSP, TRMM, AQUA and ADEOS-II satellites), Issledovanie Zemli iz kosmosa, 2006, No. 4, pp. 34–41.
  6. Mitnik L.M., Mitnik M.L., Gurvich I.A. Vykochko A.V., Kuzlyakina Yu.A., Chernyi I.V., Chernyavskii G.M., Issledovanie evolyutsii tropicheskikh tsiklonov v severo-zapadnoi chasti Tikhogo okeana po dannym SVCh-radiometrov MTVZA-GYa so sputnika Meteor-M №1 i AMSR-E so sputnika Aqua (Investigation of tropical cyclone evolution in the Northwest Pacfic from Meteor-M No.1 MTVZA-GY and Aqua AMSR-E data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 4, pp. 121–128.
  7. Mitnik L.M., Mitnik M.L., Chernyavskii G.M., Chernyi I.V., Vykochko A.V., Pichugin M.K., Privodnyi veter i morskoi led v Barentsevom more po dannym mikrovolnovykh izmerenii so sputnikov Meteor-M № 1 i GCOM-W1 v yanvare-marte 2013 g. (Surface wind and sea ice in the Barentz Sea from Meteor-M No. 1 and GCOM-W1 microwave measurements in January - March 2013), Issledovanie Zemli iz kosmosa, 2015b, No. 6, pp. 36-46.
  8. Biswas S.K., Farrar S, Gopalan K., Santos-Garcia A., Linwood Jones W., Bilanow S., Intercalibration of microwave radiometer brightness temperatures for the Global Precipitation Measurement Mission, IEEE Trans. Geoscience Remote Sensing, 2007, Vol. 51, No. 3, pp. 1465–1477.
  9. Brown S., Ruf C., Determination of a hot black body reference target over the Amazon rainforest for the on-orbit calibration of microwave radiometers, J. Oceanic Atmos. Tech., 2005, Vol. 22. No. 9, pp. 1340 –1352.
  10. Brucker L., Picard G., Arnaud L,. Barnola J.-M., Schneebeli M., Brunjail H., Lefebvre E., Fily M., Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciology, 2011, Vol. 57, No. 201, pp. 171–182.
  11. Cherny I.V., Mitnik L.M., Mitnik M.L., Uspensky A.B., Streltsov A.M., Оn-orbit calibration of the “Meteor-M” Microwave Imager/Sounder, Proc. IGARSS 2010, Hawaii, pp. 558–561.
  12. Colton M., Poe G. Intersensor calibration of DMSP SSM/I’s: F-8 to F-14, 1987–1997, IEEE Trans. Geosci. Remote Sens., 1999, Vol. 37, No. 1, pp. 418–439.
  13. Das N.N., Colliander A., Chan S.K., Intercomparisons of brightness temperature observations over land from AMSR-E and WindSat, IEEE Trans. Geoscience Remote Sensing, 2014, Vol. 52, No. 2, pp. 452–464.
  14. Gentemann C.L., Wentz F.J., Brewer M., Hilburn K.A., Smith D.K., Passive microwave remote sensing of the ocean: an overview. In: Oceanography from Space, revisited. Eds. V. Barale, J. Gower and L. Alberotanza, Springer, Heidelberg, 2010, pp. 19–44.
  15. Hilburn K.A., Gentemann S.L., AMSR2 calibration: Intercomparison of RSS and JAXA brightness temperatures, J. Geophys. Res. Ocean, 2015, in press.
  16. Hollinger J., Peirce J., Poe G., SSM/I instrument evaluation, IEEE Trans. Geoscience Remote Sensing, 1990, Vol. 28, No. 5, pp. 781–790.
  17. Imaoka K., Kachi M., Fujii H,Murakami H., Hori M., Ono A., IgarashiT., NakagawaK., Oki T., Honda Y., Shimoda H., Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change, Proceedings of the IEEE, 2010, Vol. 98, No. 5, pp. 717–734.
  18. Kroodsma R.A., McKague D.S., Ruf C. S. Extension of vicarious cold calibration to 85–92 GHz for spaceborne microwave radiometers, IEEE Trans. Geoscience Remote Sensing, 2013, Vol. 52, No. 9, pp. 4743–4751.
  19. Leduc-Leballeur M., Picard G., Mialon A., Arnaud L., Lefebvre E., Possenti P., Kerr Y., Modeling L-band brightness temperature at Dome C in Antarctica and comparison with SMOS observations, IEEE Trans. Geoscience Remote Sensing, 2015, Vol. 53, No. 7, pp. 4022–4032, doi: 10.1109/TGRS.2015.2388790.
  20. Macelloni G., Brogioni M., Pampaloni P., Cagnati A., Multifrequency microwave emission the Dome-C area on the East Antarctic Plateau: Temporal and spatial variability, IEEE Trans. Geoscience Remote Sensing, 2007, Vol. 45, No. 7, pp. 2029–2039.
  21. Macelloni G., Brogioni M., Pettinato S., Zasso R., Crepaz A., Zaccaria J., Padovan B., Drinkwater M. Ground-based L-band emission measurements at Dome-C Antarctica: The DOMEX-2 experiment, IEEE Trans. Geoscience Remote Sensing, 2013, Vol. 51, No. 9, pp. 4718–4730.
  22. Meissner T., Wentz F., Intercalibration of AMSR-E and Windsat brightness temperature measurements over land scenes, Proc. IGARSS, 2010, pp. 3218–3219.
  23. Mitnik L.M., Cherny I.V., Mitnik M.L., Chernyavskii G.M., Kuleshov V.P., Baranyuk A.V., The MTVZA-GYa radiometer on the Meteor-M no. 2 satellite: the first 10 months in an orbit, calibration of data and retrieval of geophysical parameters, Abstract of Intern. Symposium "Atmospheric Radiation and Dynamics“ (ISARD – 2015), Saint-Petersburg-Petrodvorets, June 2015, pp. 23–25.
  24. Mitnik L.M., Mitnik M.L., Retrieval of atmospheric and ocean surface parameters from ADEOS-II AMSR data: comparison of errors of global and regional algorithm, Radio Science, 2003, Vol. 38, № 4, 8065, doi: 10.1029/2002RS002659.
  25. Mitnik L.M., Mitnik M.L., Zabolotskikh E.V., Microwave sensing of the atmosphere-ocean system with ADEOS-II AMSR and Aqua AMSR-E, J. Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 156–165.
  26. Mo T., Postlaunch calibration of the NOAA-18 Advanced Microwave Sounding Unit-A, IEEE Trans. Geoscience Remote Sensing, 2007, Vol. 45, No. 7, pp. 1928–1937.
  27. Mo T., A study of the NOAA near-nadir AMSU-A brightness temperatures over Antarctica, J. Atmos. Oceanic Technology, 2010, Vol. 27, No. 6, pp. 995–1004.
  28. Mo T., Calibration of the NOAA AMSU-A radiometers with natural test site, IEEE Trans. Geoscience Remote Sensing, 2011, Vol. 49, No. 9, pp. 3334–3342.
  29. Narvekar P.S., Heygster G., Jackson T.J., Bindlish R., Macelloni G., Notholt J., Passive polarimetric microwave signatures observed over Antarctica, IEEE Trans. Geoscience Remote Sensing, 2010, Vol. 48, No. 3, pp. 1059–1075.
  30. Prigent C., Jaumouillé E., Chevallier F., Aires F., A parameterization of the microwave land surface emissivity between 19 and 100 GHz, anchored to satellite-derived estimates, IEEE Trans. Geoscience Remote Sensing, 2008, Vol. 46, No. 2, pp. 344–352.
  31. Ruf C.S., Detection of calibration drifts in space borne microwave radiometers using a vicarious cold reference, IEEE Trans. Geosci. Remote Sens., 2000, Vol. 38, No. 1, pp. 44–52.
  32. Surdyk S., Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: an analytical approach, Remote Sensing of Environment, 2002, Vol. 80, pp. 256– 271.
  33. Tian Y., Peters-Lidard C.D., Harrison K.W., Prigent C., Norouzi H., Aires F., Boukabara S.A., Furuzawa F.A., Masunaga H., Quantifying uncertainties in land-surface microwave emissivity retrievals, IEEE Trans. Geoscience Remote Sens., 2014, Vol. 52, No. 2, pp. 829–840.
  34. Wentz F.J., Ashcroft P., Gentemann C., Post-launch calibration of the TRMM microwave imager, IEEE Trans. Geoscience Remote Sens., 2001, Vol. 39, No. 2, pp. 415–422.
  35. Urbini S., Frezzotti M., Gandolfi S., Vincent C., Scarchilli C., Vittuari L., Fily M., Historical behaviour of Dome C and Talos Dome (East Antarctica) as investigated by snow accumulation and ice velocity measurements, Global and Planetary Change, 2008, Vol. 60, pp. 576–588.
  36. Wilheit T., Comparing calibrations of similar conically window-channel microwave radiometers, IEEE Trans. Geoscience Remote Sensing, 2013, Vol. 51, No. 3, pp. 1453–1464.
  37. Zabolotskikh E., Mitnik L., Chapron B., An updated geophysical model for AMSR-E and SSMIS brightness temperature simulations over oceans, Remote Sensing, 2014, Vol. 6, No. 3, pp. 2317–2342.