ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 9-24

Method for estimating vegetation cover phenological characteristics from satellite data time series

T.S. Miklashevich 1 , S.A. Bartalev 1 
1 Space Research Institute RAS, Moscow, Russia

Accepted: 23.10.2015
DOI: 10.21046/2070-7401-2016-13-1-9-24 

Available satellite systems provide global observations of the Earth with high temporal resolution. This allows us to obtain regular measurement series of the earth surface spectral reflective properties required for evaluating the phenological characteristics of vegetation cover seasonal dynamics. Most existing algorithms for estimating phenological characteristics of vegetation cover do not have the necessary flexibility. Firstly, they assume an absolute or relative threshold of some parameter (which usually depends on climatic and meteorological conditions and thus has geographical variability) to be an indicator of the onset of a particular phase of vegetation cover seasonal development. Secondly, existing algorithms for the analysis of satellite data time series generally do not take into account possible presence of several distinct local extrema of vegetation seasonal dynamics. The proposed method for determining vegetation phenological characteristics based on satellite data time series has the properties of spatial adaptability and is largely free from the above drawbacks.
Keywords: remote sensing, vegetation cover, phenological characteristics, time series, vegetation index, MODIS
Full text

References:

  1. Bartalev S.A., Egorov V.A., Ershov D.V., Isaev A.S., Lupyan E.A., Plotnikov D.E., Uvarov I.A., Sputnikovoe kartografirovanie rastitel'nogo pokrova Rossii po dannym spektroradiometra MODIS (Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 285–302.
  2. Bartalev S.A., Lupjan E.A., Issledovanija i razrabotki IKI RAN po razvitiju metodov sputnikovogo monitoringa rastitel'nogo pokrova (R&D on methods for satellite monitoring of vegetation by the Russian Academy of Sciences’ Space Research Institute), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 197–214.
  3. Egorov V.A., Il'in V.O., Lupjan E.A., Mazurov A.A., Proshin A.A., Flitman E.V., Vozmozhnosti postroenija avtomatizirovannyh sistem obrabotki sputnikovyh dannyh na osnove programmnogo kompleksa XV_SAT (The possibility of building automated systems for satellite data processing on the basis of software XV_SAT), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Issue 1, pp. 431–436.
  4. Isachenko A.G., Landshaftovedenie i fiziko-geograficheskoe raionirovanie (Landscape science and physical-geographical zoning), Moscow: Vysshaya shkola, 1991, 366 p.
  5. Medvedeva M.A., Bartalev S.A., Lupyan E.A., Matveev A.M., Tolpin V.A., Poida A.A., Vozmozhnosti otsenki momenta nastupleniya vegetatsionnogo sezona na osnove sputnikovykh i meteorologicheskikh dannykh (The possibility of estimating the onset of the growing season based on satellite and meteorological data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 2, pp. 313–321.
  6. Medvedeva M.A., Elsakov V.V., Savin I.Ju., Bartalev S.A., O svjazi fenologicheskogo razvitija rastitel'nosti taezhnoj zony s velichinoj NDVI, opredelennoj po sputnikovym dannym (About the correlation between vegetation phenological dynamics of northern taiga and satellite based NDVI values), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 1, pp. 319–329.
  7. Medvedeva M.A., Savin I.Ju., Bartalev S.A., Lupjan E.A., Ispol'zovanie dannyh NOAA-AVHRR dlja vyjavlenija mnogoletnej dinamiki rastitel'nosti Severnoj Evrazii (Usage of NOAA-AVHRR data for detection of vegetation dynamics in Northern Eurasia), Issledovanija Zemli iz kosmosa, 2011, No. 4, pp.55–62.
  8. Plotnikov D.E., Bartalev S.A., Lupyan E.A., Priznaki raspoznavaniya pakhotnykh zemel' na osnove mnogoletnikh ryadov dannykh sputnikovogo spektroradiometra MODIS (The recognition features to map arable lands based on multi-annual MODIS Earth observation data ), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 1, pp. 330–341.
  9. Plotnikov D.E., Miklashevich T.S., Bartalev S.A., Vosstanovlenie vremennykh ryadov dannykh distantsionnykh izmerenii metodom polinomial'noi approksimatsii v skol'zyashchem okne peremennogo razmera (Using local polynomial approximation within moving window for remote sensing data time-series smoothing and data gaps recovery), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 103–110.
  10. Strashnaja A.I., Bartalev S.A., Maksimenkova T.A., Chub O.V., Tolpin V.A., Plotnikov D.E., Bogomolova N.A., Agrometeorologicheskaja ocenka sostojanija ozimyh zernovyh kul'tur v period prekrashhenija vegetacii s ispol'zovaniem nazemnyh i sputnikovyh dannyh na primere Privolzhskogo federal'nogo okruga (Agrometeorological assessment of winter grain crops during the growing season termination using ground and satellite data on the example of Volga Federal district.), Trudy gidrometeorologicheskogo nauchno-issledovatel'skogo centra Rossijskoj federacii, 2014, No. 351, pp. 85–107.
  11. Shklyaev V.A.,. Ermakova L.N, Shklyaeva L.S., Osobennosti dolgovremennykh izmenenii kharakteristik vegetatsionnykh periodov v Permskom krae (Features of long-term changes of parameters of the vegetative periods in the Perm edge), Geograficheskii vestnik Meteorologiya, 2012, Vol. 2. No. 21, pp. 68–73.
  12. Atzberger C., Klisch A., Mattiuzzi M., Vuolo F., Phenological metrics derived over the european continent from NDVI3G data and MODIS time series, Remote Sens., 2013, Vol. 6, pp. 257–284.
  13. Balzter, H., Gerard, B., Weedon G., Grey W., Combal B., Bartholome E., Bartalev S.A., Los S., Coupling of Vegetation Growing Season Anomalies with Hemispheric and Regional Scale Climate Patterns in Central and East Siberia, Journal of Climate, Vol. 20, No. 15, 2007, pp. 3713–3729.
  14. Bhandari S., Phinn S., Gill T., Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia, Remote Sensing, 2012, Vol. 4, No. 6, pp.1856-1886.
  15. Chen W., Foy N., Olthof I., Zhang Y., Fraser R., Latifovic R., Poitevin J., Zorn P., McLennan D., A biophysically based and objective satellite seasonality observation method for applications over the Arctic, International Journal of Remote Sensing, 2014, Vol. 35, No. 18, pp. 6742–6763.
  16. Eklundh L., Jönsson P., TIMESAT 3.1 - Software Manual, Lund University, 2012, 82 p.
  17. Frich P., Alexander L.V., Della-Marta P., Gleason B., Haylock M., Klein Tank A.M.G., Peterson T., Observed Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century, Climate Research, 2002, Vol. 19, No. 3, pp. 193–212.
  18. Hardisky M.A., Klemas V., Smart R.M., The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies, Photogrammetric Engineering and Remote Sensing, 1983, Vol. 49, pp. 77–83.
  19. Kogan F.N., Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data, Bulletin of the American Meteorological Society, 1995, Vol. 76, No. 5, pp. 655–668.
  20. Kuenzer C., Dech S., Wagner W., Remote Sensing Time Series: Revealing Land Surface Dynamics, Remote Sensing and Digital Image Processing, Springer, 2015, 441 p.
  21. Lambert J., Drenou C., Denux J. P., Gérard B., Chéret V., Monitoring forest decline through remote sensing time series analysis, GIScience and Remote Sensing, 2013, Vol. 50, Issue 4, pp. 437–457.
  22. Lu L., Kuenzer C., Wang C., Guo H., Li Q., Evaluation of Three MODIS-Derived Vegetation Index Time Series for Dryland Vegetation Dynamics Monitoring, Remote Sens., 2015, Vol. 7, No. 6, pp. 7597–7614.
  23. Nelder J.A., Mead R., A simplex method for function minimization, Computer Journal, 1965, Vol. 7, pp. 308–313.
  24. Prabakaran C., Singh C.P., Panigrahy S., Parihar J.S., Retrieval of forest phenological parameters from remote sensing-based NDVI time-series data, Current Science, 2013, Vol. 105, No. 6, pp. 795–802.
  25. Richardson A.J., Wiegand C.L., Distinguishing vegetation from soil background information, Photogrammetric Engineering and Remote Sensing, 1977, Vol. 43, pp. 1541–1552.
  26. Wang H., Dai J., Ge Q., Comparison of Satellite and Ground-Based Phenology in China’s Temperate Monsoon Area, Advances in Meteorology, 2014, 10 p.
  27. White M.A., Thornton P.E., Running S.W. A continental phenology model for monitoring vegetation responses to inter-annual climatic variability, Glob. Biogeochem. Cycles, 1997, Vol. 11, No. 2, pp. 217–234.