Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 25-35
Experience of creating a geobotanical map using discriminant analysis of field vegetation description and remote sensing data
1 M.V. Lomonosov Moscow State University, Moscow, Russia
Accepted: 26.11.2015
DOI: 10.21046/2070-7401-2016-13-1-25-35
The paper focuses on the modern approach to creating a map of a study area (5466 ha, south-western Moscow Region) by combining remote sensing data, morphometric characteristics of the terrain and field data. The main classification technique used was combined spatial data stepwise discriminant analysis (SDA). The reliability of SDA was assessed by the criterion of lambda values. The quality of SDA was estimated at 97.2%, which is a very high value for Landsat images. The steps of the employed approach are specified and shown in a block diagram form. Applicability of the SDA method for accurate mapping of vegetation cover is shown; SDA-based classification does not require additional quality assessment by comparison with other thematic maps. Simplicity of both technical formation of the tables for SDA and the analysis itself imply good prospects for using the method for vegetation mapping.
Keywords: geobotanical map, discriminant analysis, remote sensing data, digital terrain models, Landsat
Full textReferences:
- Annenskaya G.N., Zhuchkova V.K., Kalinina V.R., Mamai I.I., Nizovtsev V.A., Khrustaleva M.A., Tsesel'chuk Yu.N., Landshafty Moskovskoi oblasti i ikh sovremennoe sostoyanie (Landscapes of the Moscow Region and its current state), Smolensk: Izd-vo Smolenskogo gumanitarnogo universiteta, 1997, 296 p.
- Belyaeva N.G., Popov S.Yu., Izmenenie lesistosti zapadnoi chasti Naro-Fominskogo raiona Moskovskoi oblasti za poslednie 200 let (Changes of forestry of Naro-Fominsk district Moscow region in the last 200 years), Lesovedenie, 2016, No. 1, pp. 44–54.
- Vasilevich M.I., Elsakov V.V., Shchanov V.M., Primenenie sputnikovykh metodov issledovanii v monitoringe sostoyaniya lesnykh fitotsenozov v zone vybrosov promyshlennogo predpriyatiya (The use of satellite research methods in monitoring the state of forest communities in the area of industrial emissions), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2014, Vol. 11. No. 1, pp. 30–42.
- Vorob'eva A.A., Distantsionnoe zondirovanie Zemli (Earth remote sensing), Saint Petersburg: SPbU ITMO, 2012, 168 p.
- Gavrilyuk E.A, Ershov D.V., Metodika sovmestnoi obrabotki raznosezonnykh izobrazhenii Landsat-TM i sozdaniya na ikh osnove karty nazemnykh ekosistem Moskovskoi oblasti (Methods of joint analysis of the seasonal scenes of Landsat-TM and creation on their basis terrestrial ecosystems maps), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 4, pp. 15–23.
- Golovina L.A., Dubovik D.S., Topograficheskoe deshifrirovanie snimkov (Topographical interpretation of images), Novosibirsk: SGGA, 2011, 60 p.
- Elsakov V.V., Polikarpova N.V., Sputnikovye metody v analize izmenenii zapasa lishainikov v fitotsenozakh zapovednika “Pasvik“ (Satellite methods for the analysis of changes in lichen cover in vegetation communities of Pasvik Nature Reserve), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 87–97.
- Kozlov D.N., Puzachenko M.Yu., Fedyaeva M.V., Puzachenko Yu.G., Otobrazhenie prostranstvennogo var'irovaniya svoistv landshaftnogo pokrova na osnove distantsionnoi informatsii i tsifrovoi modeli rel'efa (Displaying spatial variation of properties of land cover based on remote sensing information and digital elevation model), Izvestiya RAN. Ser. Geograficheskaya, 2008, No. 4, pp. 112–124.
- Krenke A.N., Otobrazhenie faktorov formirovaniya komponentov landshafta na osnove tematicheskikh kart, distantsionnoi informatsii i trekhmernoi modeli rel'efa (Display form factor components of the landscape on the basis of thematic maps, remote sensing information and three-dimensional terrain model), Candidate's biol. sci. thesis, 25.00.23, Moscow: IG RAN, 2011, 128 p.
- Krenke A.N., Puzachenko Yu.G., Postroenie karty landshaftnogo pokrova na osnove distantsionnoi informatsii (Mapping land cover based on remote sensing information), Ekologicheskoe planirovanie i upravlenie, 2008, Vol. 2, No. 7, pp. 10–25.
- Lisovskii A.A., Obolenskaya E.V., Issledovanie arealov melkikh mlekopitayushchikh Yugo-Vostochnogo Zabaikal'ya metodom modelirovaniya ekologicheskoi nishi (Reaserching of the areals of small mammals of South-East Zabaikalie Region by the method of modeling ecological niche), Zhurn. obshch. Biologii, 2014, Vol. 75, No. 5, pp. 353–371.
- Popov S.Yu., Geoinformatsionnye sistemy i prostranstvennyi analiz dannykh v naukakh o lese (Geographic Information Systens for use in forestry sciences), Saint Petersburg: ITs Intermediya, 2013, 400 p.
- Popov S.Yu., Belyaeva N.G., Basova E.V., Tikhonova E.V., Kadetov N.G., Morozova O.V., Puzachenko M.Yu., Chernen'kova T.V. Baza dannykh FORDIV (Data Base FORDIV), Patent CR No 2014620979, Moscow: Rospatent, 08.07.2014.
- Puzachenko Yu.G., Matematicheskie metody v ekologicheskikh i geograficheskikh issledovaniyakh (Mathematical methods in ecological and geographical studies), Moscow: ACADEMA, 2004, 416 p.
- Saburov D.N. Lesa Pinegi (Forest of the Pinega Region), Leningrad: Nauka, 1972, 173 p.
- Sandlerskii R.B., Termodinamicheskie kharakteristiki yuzhno-taezhnykh biogeotsenozov na osnove distantsionnoi informatsii (yug valdaiskoi vozvyshennosti, tsentral'no-lesnoi zapovednik) (Thermodynamic characteristics of southern taiga biocenoses based on remote sensing information (south of the Valdai Hills, Central Forest Reserve), Candidate's biol. sci. thesis: 03.02.08. Moscow: IPEE RAN, 2013, 269 p.
- Smirnov V.E., Khanina L.G., Metody analiza sostoyaniya rastitel'nogo pokrova (Methods for analysis of vegetation), In: Vostochnoevropeiskie lesa. Istoriya v golotsene i sovremennost’ (East European forests: history in the Holocene and current state), Moscow: Nauka, 2004, Vol. 1, pp. 290–313.
- Khalafyan A.A., Matematicheskaya statistika s elementami teorii veroyatnostei (Mathematical Statistics with elements of the theory of probability), Moscow: Binom, 2010, 491 p.
- Imagine E., Prakticheskoe rukovodstvo (Practical Guide), Norcross, Georgia: Leica Geosystems, 2005, 707 p.
- Moreno J.F., Maria-Carmen G., Luis A., Analysis, Investigation and Monitoring of Water resources, for the management of multi-purpose reservoirs, Survey of Remote Sensing Data Analysis Methods. Contract № ENV4-CT98-0740 Version 1.0, WP 3100 - EO Signal Analysis Methods, available at: http://dataserv.cetp.ipsl.fr/AIMWATER/reports/EOsurvey_report.pdf, 1999.
- USGS science for a changing world, available at: http://earthexplorer.usgs.gov/.