ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 171-185

Empirical model of emission variations of the upper atmosphere continuum

A.I. Semenov 1 , N.N. Shefov 1 , I.V. Medvedeva 2 , V.Yu. Khomich 3 , Yu.A. Zheleznov 3 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
3 Institute of Electrophysics and Electric Power RAS, St. Petersburg, Russia

Accepted: 01.12.2015
DOI: 10.21046/2070-7401-2016-13-1-171-185 

Based on the analysis of data of ground-based, satellite and rocket measurements of the intensity of the continuum of the upper atmosphere in the visible and near infrared regions of the spectrum, we developed a model of regularities of the spectral distribution of the continuum emission intensity, and their variations for various helio-geophysical conditions. Absolute integral intensity of the infrared component of the continuum emission was calculated using the obtained in laboratory conditions rates of photochemical reactions between molecules of nitric oxide and excited and unexcited molecules of ozone. It was revealed that the height distribution of the intensity of the continuous spectrum of the atmosphere radiation in the infrared spectrum range covers a height range of the middle atmosphere from 10 to 15 km. Comparison of calculated values of the continuum intensity with the results of its ground-based spectrophotometric measurements in the near infrared region of the spectrum allowed us to specify the ratio of the rate of reaction of the molecules of nitric oxide with ozone. This reaction is responsible for occurrence of the continuum emission in the infrared region of the spectrum. In the model, variations of the altitude distribution of the volume intensity of the infrared continuum for various heliogeophysical conditions are presented. We found, that the basic interval of heights of a radiating layer of the continuum caused by process NO+O is located at heights of 80−110 km. The layer of the continuum emission, which occurs due to the processes of interaction of the molecules of nitric oxide with ozone molecules in the excited and unexcited states, covers the whole of middle atmosphere above the troposphere.
Keywords: continuum emissions, infrared and visible radiation, intensity, height distribution, airglow variations, middle atmosphere
Full text


  1. Gindilis L.M., Absolyutnye izmereniya nepreryvnogo spektra svecheniya nochnogo neba (Absolute measurements of the continuous spectrum of the night sky airglow), Polyarnye siyaniya i svechenie nochnogo neba, 1965, No. 11, pp. 26–34.
  2. Gurvich A.S., Vorob’ev V.V., Savchenko S.A., Pakhomov A.I., Padalka G.I., Shefov N.N., Semenov A.I., Nochnoe svechenie verkhnei atmosfery v diapazone 420–530 nm po izmereniyam na orbital’noi stantsii «Mir» v 1999 g. (Night glow of the upper atmosphere in the range of 420-530 nm by measuring from the orbital station “Mir” in 1999), Geomagnetizm i aeronomiya, 2002, Vol. 42, No. 4, pp. 541–546.
  3. Krassovsky V.I., O mekhanizme svecheniya nochnogo neba (On the mechanism of airglow), Dokl. AN SSSR,1951, Vol. 77, No. 3, pp. 395–398.
  4. Semenov A.I., Interferometricheskie izmereniya temperatury verkhnei atmosfery. I. Primenenie okhlazhdaemykh elektronno-opticheskikh preobrazovatelei (Interferometric measurements of the temperature of the upper atmosphere. I. Application of cooled electron-optical converters), Polyarnye siyaniya i svechenie nochnogo neba,1975, No. 23, pp. 64–65.
  5. Straizhis V., Mnogotsvetnaya fotometriya zvezd (Multicolor photometry of stars), Vilnius: Mokslas, 1977, 312 p.
  6. Taranova O.G., Nepreryvnyi spektr v izluchenii nochnogo neba i polyarnykh siyanii (The continuous spectrum of the radiation in the night sky and auroras), Spektral’nye, elektrofotometricheskie i radiolokatsionnye issledovaniya polyarnykh siyanii i svecheniya nochnogo neba, 1962, No. 8, pp. 21–23.
  7. Fishkova L.M., Nochnoe izluchenie sredneshirotnoi verkhnei atmosfery Zemli (Nighttime airglow of the midlatitude upper atmosphere of the Earth), Ed. N.N. Shefov, Tbilisi: Metsniereba, 1983, 272 p.
  8. Chuvaev K.K., O svechenii zemnoi atmosfery v nepreryvnom spektre (About the glow of Earth’s atmosphere in the continuous spectrum), Dokl. AN SSSR, 1952, Vol. 87, No. 4, pp. 551–554.
  9. Shefov N.N., Nepreryvnyi spektr v svechenii nochnogo neba (Continuous spectrum in the night airglow), Spektral’nye, elektrofotometricheskie i radiolokatsionnye issledovaniya polyarnykh siyanii i svecheniya nochnogo neba, 1961, No. 5, pp. 39–41.
  10. Khomich V.Yu, Semenov A.I., Shefov N.N., Airglow as an Indicator of Upper Atmospheric Structure and Dynamics, Springer-Verlag GmbH, 2008, 736 p.
  11. Clough P.N., Thrush B.A., Mechanism of chemiluminescent reaction between nitric oxide and ozone, Trans. Faraday Soc., 1967, Vol. 63, No. 4, pp. 915–925.
  12. Dandekar B.S., Measurements of the airglow continuum with a birefringent filter photometer, Appl. Opt., 1966, Vol. 5, No. 5, pp. 835–838.
  13. Davis T.N., Smith L.L., Latitudinal and seasonal variations in the night airglow, J. Geophys. Res., 1965, Vol. 70, No. 5, pp. 1127–1138.
  14. Gadsden M., Marovich E., The nightglow continuum, J. Atmos. Terr. Phys., 1973, Vol. 35, No. 9, pp. 1601–1614.
  15. Golde M.F., Roche A.E., Kaufman F., Absolute rate constant for the O + NO chemiluminescence in the near infrared, J. Chem. Phys., 1973, Vol. 59, No. 8, pp. 3953–3959.
  16. Greer R.G.H., Murtagh D.P., McDade I.C., Dickinson P.H.G., Thomas L., Jenkins D.B., Stegman J., Llewellyn E.J., Witt G., Mackinnon D.J., Williams E.R. ETON 1: A data base pertinent to the study of energy transfer in the oxygen nightglow, Planet. Space Sci., 1986, Vol. 34, No. 9, pp. 771–788.
  17. Kenner R.D., Ogryzlo E.A., Orange chemiluminescence from NO2, J. Chem. Phys., 1984, Vol. 80, No. 1, pp. 1–6.
  18. McDade I.C., Llewellyn E.J., Greer R.G.H., Murtagh D.P., ETON 3.: altitude profiles of the night glow continuum at green and near infrared wavelengths, Planet. Space Sci., 1986, Vol. 34, No. 9, pp. 801–810.
  19. Noxon J.P., The near infrared nightglow continuum, Planet. Space Sci., 1978, Vol. 26, No. 3, pp. 191–192.
  20. Robley R., Vilkki E., Le continuum dans la lumière du ciel nocturne, Ann. Géophys., 1970, Vol. 2, No. 1, pp. 195–199.
  21. Semenov A.I., Shefov N.N., Medvedeva I.V., Orographic Disturbances in the Upper Atmosphere, J. Atm. Solar-Terr. Phys., 2012, Vol. 90–91, pp. 124–133.
  22. Sobolev V.G., Continuum in night airglow between 8000 – 11000 A, Planet. Space Sci., 1978, Vol. 26, No. 7, pp. 703–704.
  23. Sparrow J.G., Ney E.P., Burnett G.B., Stoddart J.W., Airglow observations from OSO-B2 satellite, J. Geophys. Res., 1968, Vol. 73, No. 3, pp. 857–866.
  24. Sternberg J.R., Ingham M.P., Observations of the airglow continuum, Mon. Not. Roy. Astron. Soc., 1972, Vol. 159, No. 1, pp. 1–20.
  25. Wraight P.C., Theory of the nightglow continuum, Planet. Space Sci., 1986, Vol. 34, No. 12, pp. 1373.