ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 17-34

Utilization of remote sensing data for modeling water and heat balance components of the Russian Central Black Earth Region territory

E.L. Muzylev 1 , A.B. Uspensky 2 , Z.P. Startseva 1 , E.V. Volkova 2  , A.V. Kukharsky 2 , S.A. Uspensky 2 
1 Water Problems Institute RAS, Moscow, Russia
2 State Research Centre of Space Hydrometeorology “Planeta” , Moscow, Russia
A method has been developed for assessing soil water content, evapotranspiration and other water and heat balance components of a vast territory based on the physical-mathematical model of water and heat exchange of vegetation covered land areas with atmosphere (LSM, Land Surface Model) using satellite data on land surface and meteorological conditions. Soil and vegetation characteristics are considered to be the model parameters and meteorological characteristics are the input variables. Their values have been derived from ground-observed or AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/Meteosat-9, -10 data. These include three types of land surface temperature (LST) (land-surface skin temperature Tsg, air foliage temperature Ta, and efficient radiation temperature Ts.eff or Tls), emissivity E, normalized difference vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, cloudiness, and precipitation. The methods and technologies have been developed or refined to retrieve estimates of these characteristics by thematic processing of satellite data. The efficiency control of these technologies for the study area of the Russian Central Black Earth Region of 227,300 km2 has been carried out. The techniques to assimilate satellite-derived estimates in the model have been also been developed. Using the model adapted to the satellite data, there have been calculated soil water content, evapotranspiration and other components of water and heat balance of the study territory for 2009–2012 vegetation seasons.
Keywords: LS Model, satellite data, AVHRR, MODIS, SEVIRI, land surface, leaf area index, temperature, precipitation, soil water content, evapotranspiration
Full text

References:

  1. Volkova E.V., Otsenki parametrov oblachnogo pokrova, osadkov i opasnyh yavleniy pogody po dannym radiometra AVHRR s MISZ serii NOAA kruglosutochno v avtomaticheskom regime (Automatic estimation of cloud cover and precipitation parameters obtained by AVHRR NOAA for day and night conditions), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol.10, No. 3, pp. 66–74.
  2. Volkova E.V., Opredelenie summ osadkov po dannym radiometrov SEVIRI/Meteosat-9,-10 and AVHRR/NOAA dlya Evropeyskoy territorii Rossii (Estimation of precipitation amount using SEVIRI/Meteosat-9 and AVHRR/NOAA data for the European territory of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 163–177.
  3. Volkova E.V., Uspensky A.B., Detektirovanie oblachnosti i opredelenie ee parametrov po sputnilovym dannym v svetloe vremya sutok (Detection of Clouds and Identification of Their
  4. Parameters from the Satellite Data in the Daytime), Meteorologiya i gidrologiya, 2007, No. 12, pp. 5–20.
  5. Volkova E.V., Uspensky A.B., Otsenki parametrov oblachnogo pokrova po dannym geostatsionarnogo MISZ METEOSAT-9 kruglosutochno v avtomaticheskom regime (Estimation of cloud cover parameters from METEOSAT-9 geostationary meteorological satellite data for day and night time), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 16–22.
  6. Muzylev E.L., Uspensky A.B., Startseva Z.P., Volkova E.V., Modelirovanie gidrologicheskogo tsikla rechnyh vodosborov s ispolzovaniem sinhronnoy sputnikovoy informatsii vysokogo razresheniya (Simulation of Hydrological Cycle of River Basins Using Synchronous High Resolution Satellite Data), Meteorologiya i gidrologiya, 2002, No. 5, pp. 68–82.
  7. Muzylev E.L., Uspensky A.B., Volkova E.V., Startseva Z.P., Ispolzovanie sputnikovoy informatsii pri modelirovanii vertikalnogo teplo- i vlagoperenosa dlya rechnyh vodosborov, (Using Satellite Information for Modeling Heat and Moisture Transfer in River Watersheds), Issledovanie Zemli iz kosmosa, 2005, No. 4, pp.35–44.
  8. Muzylev E.L., Uspensky A.B., Startseva Z.P., Volkova E.V., Kukharsky A.V., Modelirovanie sostavlyayushchih vodnogo i teplovogo balansov dlya rechnogo vodosbora s ispolzovaniem sputnikovyh dannyh o harakteristikah podstilayushchey poverhnosti, (Modeling water and heat balance components for the river basin using remote sensing data on underlying surface characteristics), Meteorologiya i gidrologiya, 2010, No. 3, pp. 118–133.
  9. Muzylev E.L., Uspensky A.B., Startseva Z.P., Gelfan A.N., Uspensky S.A., Alexandrovich M.V., Ispolzovanie sputnikovyh dannyh o harakteristikah podstilayushchey poverhnosti i snezhnogo pokrova pri modelirovanii sostavlyayushchih vodnogo i teplovogo balansov obshirnyh territoriy selskohozyaystvennogo naznacheniya, (Utilization of Satellite Data on Land Surface and Snow Cover Characteristics for Modeling Water and Heat Balance Components in Vast Areas of Agricultural Purpose), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 258–268.
  10. Muzylev E.L., Uspensky A.B., Startseva Z.P., Volkova E.V., Kukharsky A.V., Uspensky S.A., Modelirovanie vodnogo regima territorii krupnogo selskohozyaystvennogo regiona s ispolzovaniem dannyh izmereniy geostatsionarnyh meteorologicheskih sputnikov, (Simulation of the water regime of a vast agricultural region territory utilizing measurement data from geostationary meteorological satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 53–65.
  11. Solovjev V.I., Uspensky S.A., Monitoring temperatury poverhnosti sushi po dannym geostatsionarnyh meteorologicheskih sputnikov novogo pokoleniya, (Monitoring of Land Surface Temperatures Based on Second Generation Geostationary Meteorological Satellites), Issledovanie Zemli iz kosmosa, 2009, No. 3, pp. 79–89.
  12. Solov’ev V.I., Uspenskii A.B., Uspenskii S.A., Opredelenie temperatury zemnoy poverhnosti po dannym izmereniy teplovogo izlucheniya s geostatsionarnyh meteorologicheskih ISZ (Derivation of Land Surface Temperature Using Measurements of IR Radiances from Geostationary Meteorological Satellites), Meteorologiya i gidrologiya, 2010 a, No. 3, pp.5–17.
  13. Solovjiev V.I., Uspensky S.A., Uspensky A.B. Razvitie metodov monitoringa temperatury poverhnosti sushi po dannym geostatsionarnyh sputnikov novogo pokoleniya (Monitoring of land surface temperatures based on data from new generation geostationary satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010 b, Vol. 7, No. 2, pp. 67–74.
  14. Uspensky S.A., Uspensky A.B., Rublev A.N. Analiz vozmozhnosti monitoringa pripoverhnostnoy temperatiry vozduha po dannym geostatsionarnyh meteorologicheskih sputnikov (Analysis of Land Air Temperature Mapping Capabilities with Geostationary Satellite Data), Proc. ISARD-2011, Saint-Petersburg State University Publisher House, pp. 37–38.
  15. Uspensky A.B., Shcherbina G.I. Otsenka temperatury i izluchatelnoy sposobnosti poverhnosti sushi po dannym izmereniy uhodyashchego teplovogo izlycheniya s ISZ NOAA (Assessment of land surface temperature and emissivity from NOAA satellite measurement data on outgoing heat radiation), Issledovanie Zemli iz kosmosa, 1996, No. 5, pp. 4–13.
  16. Biftu G.F., Gan T.Y., Semi-distributed, physically based, hydrologic modeling of the Paddle River basin, Alberta, using remotely sensed data, Journal of Hydrology, 2001, Vol. 244, pp. 137–156.
  17. Biospheric Aspects of the Hydrological Cycle (BAHC), Report № 27, Ed. by BAHC Core Project Office, Institut fűr Meteorologie, Freie Universitat Berlin, Germany, 1993, 103 p.
  18. Faysash A., Smith E.A., Simultaneous Retrieval of Diurnal to Seasonal Surface Temperatures and Emissivities over SGP ARM-CART Site Using GOES Split Window, J. Appl. Meteor., 2000, Vol. 39, pp. 971–982.
  19. Gelfan A., Muzylev E., Uspensky A., Startseva Z., Romanov P., Remote Sensing Based Modeling of Water and Heat Regimes in a Vast Agricultural Region, In: Remote Sensing – Applications. Ed. Boris Escalante-Ramirez, Rijeka, Croatia: InTech – Open Access Publisher, 2012, Chapter 6, pp. 141–176.
  20. Gowda P.H., Chavez J.L., Colaizzi P.D., Evette S.R., Howell T.A., Tolk J.A., ET Mapping for Agricultural Water Management: Present Status and Challenges, Irrigation Science, 2008, Vol. 26, pp.223–237, doi:10.1007/s00271-007-0088-6.
  21. Moehrlen C., Literature Review of Current Used SVAT Models, Internal Report 04-99, 1999, Cork: University College Cork, Department of Civil & Environmental Engineering.
  22. Overgaard J., Rosbjerg D., Butts M.B., Land-Surface Modeling in Hydrological Perspective – a Review, Biogeosciences, 2006,Vol.3, pp.229–241, doi:10.5194/bg-3-229-2006.
  23. Pitman A.J., The Evolution of, and Revolution In, Land Surface Schemes Designed for Climate Models, International Journal of Climatology, 2003, Vol. 23, pp. 479–510, doi:10.1002/joc.893.
  24. Startseva Z., Muzylev E., Volkova E., Uspensky A., Uspensky S., Water and heat regimes modelling for a vast territory using remote-sensing data, International Journal of Remote Sensing, 2014, Vol. 35, No. 15, pp. 5775–5799.
  25. Uspensky A.B., Shcherbina G.I., Derivation of land surface temperatures and emissivities from satellite IR window measurements, Advances in Space Research, 1998, Vol. 21, No. 3, pp. 433-437.
  26. Wan Z., Dozier J., A generalized split-window algorithm for retrieving land surface temperature from space, IEEE Trans. Geosci. Rem. Sens., 1996, Vol. 34, No. 4, pp.892–905.