ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150-169

Polar sea ice monitoring using satellite microwave radiometer data

V.V. Tikhonov 1 , M.D. Raev 1 , E.A. Sharkov 1 , D.A. Boyarskii 1 , I.A. Repina 2, 1, 3 , N.Yu. Komarova 1 
1 Space Research Institute RAS, Moscow, Russia
2 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
3 Hydrometeorological Centre of Russia, Moscow, Russia
An overview of passive microwave satellite monitoring methods of sea ice of the polar regions is presented. A brief description of microwave radiometers launched into Earth's orbit, the data which have been used so far for the study of sea ice in the Arctic and Antarctic is given. The article describes in detail the algorithms currently used for determining sea ice concentration in the polar regions by satellite microwave radiometers. The methods of construction of these algorithms and the associated disadvantages are considered. The paper presents a new algorithm for determining concentration of the sea ice cover in the Arctic and Antarctic, according to satellite microwave radiometers data. The algorithm is developed by members of the three Russian scientific organizations: IKI RAS, IAP RAS and AARI. The method of constructing the new algorithm is fundamentally different from that of the other algorithms. It is based on a physical model of emission of the "sea surface - ice - snow - atmosphere." The algorithm does not use the values of tie points. All calculated expressions of the algorithm are derived from theoretical modeling. The algorithm makes it possible to reduce the effects of atmospheric changes on sea ice concentration estimates. The algorithm not only derives sea ice concentration, but also shows the area of sea ice occupied by puddles. The last section of the article gives a brief overview of works devoted to comparison of modern algorithms with each other, as well as comparison of their results with radar and infrared data and visual observations from ships.
Keywords: satellite microwave radiometry, emissivity, brightness temperature, algorithm, sea ice, ice concentration, puddle
Full text


  1. Bobylev L.P., Shalina E.V., Johannessen O.M., Zabolotskikh E.V., Sandven S., Babina O.I., Izmenenie arkticheskogo ledyanogo pokrova po dannym sputnikovogo passivnogo mikrovolnovogo zondirovaniya (Arctic Sea ice transformation revealed from satellite passive microwave data), Problemy Arktiki i Antarktiki, 2008, Vol. 78, No. 1, pp. 38–47.
  2. Grankov A.G., Mil’shin A.A., Vzaimosvyaz radioizlucheniya sistemi okean-atmosfera s teplovimi i dinamicheskimi processami na grin razdela (The relationship of the radio emission of the ocean-atmosphere with thermal and dynamic processes on the verge of partition), Moscow: FIZMATLIT, 2004. 168 p.
  3. Gray D.M., Male D.H., Editors, Handbook of Snow: Principles, Processes, Management and Use, Toronto: Pergamon Press, 1981, 776 p.
  4. Ivanov V.V., Alekseev V.A., Alekseeva T.A., Koldunov N., Repina I.A., Smirnov A.V., Arkticheskii ledyanoi pokrov stanovitsya sezonnym? (Does Arctic Ocean Ice Cover Become Seasonal?), Issledovaniya Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  5. Johannessen O.M., Alexandrov V., Frolov I.Y., Sandven S., Pettersson L.H., Bobylev L.P., Kloster K., Smirnov V.G., Mironov Y.U., Babich N.G., Remote Sensing of Sea Ice in the Northern Sea Route, Chichester, UK: Springer, 2007, 472 p.
  6. Kitaev L.M., Titkova T.B., Izmenchivost' al'bedo snezhnogo pokrova Vostochno-Evropeiskoi ravniny – analiz sputnikovykh dannykh (Variability of snow cover albedo – the analysis satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2011, Vol. 8, No. 2, pp. 47--–56.
  7. Kitaev L.M., Titkova T.B., Svyaz' izmenchivosti ploshchadi morskogo l'da Arktiki i meteorologicheskikh kharakteristik zimnego perioda na severe Evrazii (The connection of Arctic Sea ice changes and winter meteorological conditions of northern Eurasia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 179–192.
  8. Kotlyakov V.M., Izbrannye sochineniya. Kniga 1. Glyatsiologiya Antarktidy (Selected works in six books. Book 1. Glaciology of Antarctica), Moscow: Nauka, 2000. 432 p.
  9. Repina I.A., Ivanov V.V. Primenenie metodov distantsionnogo zondirovaniya v issledovanii dinamiki ledovogo pokrova i sovremennoi klimaticheskoi izmenchivosti Arktiki (Remote sensing in ice sea dynamic and modern Arctic climate investigation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 89–103.
  10. Repina I.A., Tikhonov V.V., Alekseeva T.A., Ivanov V.V., Raev M.D., Sharkov E.A., Boyarskii D.A., Komarova N.Yu., Elektrodinamicheskaya model' izlucheniya arkticheskogo ledyanogo pokrova dlya resheniya zadach sputnikovoi mikrovolnovoi radiometrii (Electrodynamics model of Arctic sea ice radiation to solve the problems of satellite microwave radiometry), Issledovanie Zemli iz kosmosa, 2012, No. 5, pp. 29–36.
  11. Smirnov V.G., Editors, Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the ice cover of the seas), Saint-Petersburg: AANII, 2011, 240 pp.
  12. Tikhonov V.V., Repina I.A., Alekseeva T.A., Ivanov V.V., Raev M.D., Sharkov E.A., Boyarskii D.A., Komarova N.Yu, Vosstanovlenie splochennosti ledyanogo pokrova Arktiki po dannym SSM/I (Arctic sea ice cover reconstruction on the basis of SSM/I data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 182–193.
  13. Tikhonov V.V., Repina I.A., Raev M.D., Sharkov E.A., Boyarskii D.A., Komarova N.Yu, Novyii algoritm vosstanovleniya splochennosti morskogo ledyanogo pokrova po dannim passivnogo mikrovolnovogo zondirovaniya (New algorithm sea ice cover reconstruction on the basis of passive microwave data), Issledovanie Zemli iz kosmosa, 2014, No. 2, pp. 35–43.
  14. Tikhonov V.V., Repina I.A., Raev M.D., Sharkov E.A., Boyarskii D.A., Komarova N.Yu, Kompleksnii algoritm opredeleniya ledovikh uslovii v polyarnikh regionakh po dannim sputnikovoyi mikrovolnovoyi radiometrii (VASIA2) (An integrative algorithm for ice conditions determination in polar regions from satellite microwave radiometry (VASIA2)), Issledovanie Zemli iz kosmosa, 2015, No. 2, pp. 78–93.
  15. Tyshko K.P., Cherepanov N.V., Fedotov V.I., Kristallicheskoe stroenie morskogo ledyanogo pokrova (Crystal structure of the sea ice cover ), Saint-Petersburg: Gidrometeoizdat, 2000, 66 p.
  16. Sharkov E.A., Passivnoe mikrovolnovoe zondirovanie Zemli: proshloe, nastoyashchee i plani na budushchee (Passive microwave sensing: Past, Present and Future Plans), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Issue 1, pp. 70–80.
  17. Agnew T., Howell S., The use of operational ice charts for evaluating passive microwave ice concentration data, Atmosphere-Ocean, 2003, Vol. 41, No. 4, pp. 317–331.
  18. Andersen S., Monthly Arctic Sea Ice Signatures for use in Passive Microwave Algorithms, Technical report 98-18, Danish Meteorological Institute, December 1998. 29 p. URL:
  19. Andersen S., Evaluation of SSM/I Sea Ice Algorithms for use in the SAF on Ocean and Sea Ice, Scientific report 00–10, Danish Meteorological Institute, July 2000, 49 p.
  20. Andersen S., Tonboe R., Kaleschke L., Heygster G., Pedersen L.T., Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res., 2007, Vol. 112, No. C08004, DOI: 10.1029/2006JC003543.
  21. Andersen S., Tonboe R., Kern S., Schyberg H., Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: An intercomparison of nine algorithms, Remote Sensing of Environment, 2006, Vol. 104, No. 4, pp. 374–392. DOI: 10.1016/j.rse.2006.05.013.
  22. Carsey F.D. editor., Microwave remote sensing of sea ice, Washington: American Geophysical Union, 1992, 462 p.
  23. Cavalieri D.J., Comiso J.C., Algorithm Theoretical Basis Document (ATBD) for the AMSR-E Sea Ice Algorithm, Revised December 1 2000, Landover, Maryland USA: Goddard Space Flight Center, 79 p, available at:
  24. Cavalieri D.J., P. Gloersen, and T.T. Wilheit., Aircraft and satellite passive microwave observations of the Bering Seaice cover during MIZEX West, IEEE Transactions on Geoscience and Remote Sensing, 1986, Vol. GE-24, No. 3, pp. 368–377.
  25. Cho K., Nishiura K., A study on cloud effect reduction for extracting sea ice area from passive microwave sensor data, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2010, Vol. XXXVIII, No. 8, pp. 1042–1045.
  26. Comiso J.C., SSM/I Concentrations Using the Bootstrap Algorithm, NASA Reference Publication 1380, 1995, 50 p.
  27. Comiso J.C., Polar Oceans from Space (Atmospheric and Oceanographic Sciences Library), New York: Springer, 2009, 507 p.
  28. Comiso J.C., T.C. Grenfell, D.L. Bell, M.A. Lange, and S.F. Ackley, Passive microwave in situ observations of winter Weddell sea ice, Journal of Geophysical Research, 1989, Vol. 94, No. C8, pp. 10891–10905.
  29. Cuffey K.M., W.S.B. Paterson, The Physics of Glaciers, Elsevier, 2010, 704 p.
  30. Drinkwater M.R., J.P. Crawford, and D.J. Cavalieri, Multi-frequency, multi-polarization SAR and radiometer sea ice classification, Proceeding of International Geoscience and Remote Sensing Symposium (IGARSS’91), New York, USA, 3–6 Jun 1991, Vol. I, pp. 107-111.
  31. Eicken H., Grenfell N. C., Perovich D. K., Richter-Menge J. A., Frey K., Hydraulic controls of summer Arctic pack ice albedo, Journal of Geophysical Research, 2004, Vol. 109, No. C08007. DOI:10.1029/2003JC001989.
  32. Fliickiger K., Gmiinder H., Matzler Ch., Microwave signatures of sea ice from ARKTIS 93 experiment, EARSeL Advances in Remote Sensing, 1994, Vol. 3, No. 2-XII, pp. 71-80.
  33. Gentemann C.L., Wentz F.J., Brewer M., Hilburn K., Smith D., Passive Microwave Remote Sensing of the Ocean: An Overview, Oceanography from Space. Revisited. Dordrecht, Heidelberg, London, New York: Springer, 2010. Ch. 2, pp. 13–33.
  34. Gloersen P., Campbell W.J., Cavalieri D.J., Comiso J.C., Parkinson C.L., Zwally H.J., Arctic and antarctic sea ice, 1978-1987: Satellite passive-microwave observations and analysis, 1992, Washington D.C.: NASA, 290 p.
  35. Grenfell T.C., Surface-based passive microwave observations of sea ice in the Bering and Greenland Seas, IEEE Transactions on Geoscience and Remote Sensing, 1986, Vol. GE-24, No. 3, pp. 378–382.
  36. Grenfell T.C., Surface-based passive microwave studies of multiyear sea ice, Journal of Geophysical Research: Oceans, 1992, Vol. 97, No. C3, pp. 3485–3501.
  37. Grenfell T.C., and J.C. Comiso, Multifrequency passive microwave observations of first-year sea ice grown in a tank, IEEE Transactions on Geoscience and Remote Sensing, 1986, Vol. GE-24, No. 6, pp. 826–831.
  38. Han H., Lee H., Comparison of SSM/I Sea Ice Concentration with Kompsat-1 EOC Images of the Arctic and Antarctic, IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2006, July 31–Aug. 4 2006, Denver, CO, pp.714–717.
  39. Hewison T. J., Selbach N., Heygster G., Taylor J. P., McGrath A. J., Airborne Measurements of Arctic Sea Ice, Glacier and Snow Emissivity at 24-183 GHz, Proceeding IEEE International Geoscience and Remote Sensing Symposium, IGARSS '02, 2002, Vol. 5, pp. 2851–2855.
  40. Imaoka K., Kachi M., Kasahara M., Ito N., Nakagawa K., Oki T., Instrument performance and calibration of AMSR-E and AMSR2, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2010, Vol. XXXVIII, Part 8, pp. 13–16.
  41. Ivanova N.O., M. Johannessen, L.T. Pedersen, and R.T. Tonboe, Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Trans. Geosci. Remote Sensing, 2014, Vol. 52, No. 11, pp. 7233–7246. DOI: 10.1109/TGRS.2014.2310136.
  42. Ivanova N.O., L.T. Pedersen, R.T. Tonboe, S. Kern, G. Heygster, T. Lavergne, A. Sørensen, R. Saldo, G. Dybkjaer, L. Brucker, and M. Shokr., Satellite passive microwave measurements of sea ice concentration: an optimal algorithm and challenges, The Cryosphere Discussions, 2015, Vol. 9, pp. 1296–1313. DOI: 10.5194/tcd-9-1269-2015.
  43. Johannessen O.M., Ivanova N., Sea ice passive microwave algorithms and sar validation. ESA Living Planet Symposium, At Bergen, Norway, 28 June –2 July 2010, Vol. ESA Proceedings SP-686.
  44. Kaleschke L., C. Lupkes, T. Vihma, J. Haarpaintner, A. Bochert, J. Hartmann, and G. Heygster, SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis, Can. J. Remote Sens, 2001, Vol. 27, No. 5, pp. 526–537.
  45. Kern S., A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data, Int. J. Remote Sensing, 2004, Vol. 25, pp. 1–28.
  46. Knuth M. A., Ackley S. F., Summer and early-fall sea-ice concentration in the Ross Sea: comparison of in situ ASPeCt observations and satellite passive microwave estimates, Annals of Glaciology, 2006, Vol. 4, No. 1, pp. 303-309. DOI: 10.3189/172756406781811466.
  47. Lewis M. J, Tison J. L, Weissling B., Delille B., Ackley S. F., Brabant F., Xie H. Sea ice and snow cover characteristics during the winter-spring transition in the Bellingshausen Sea: an overview of SIMBA 2007, Deep Sea Research Part II: Topical Studies in Oceanography, 2011, Vol. 58, No. 9–10, pp. 993–1276. Antarctic Sea Ice Research during the International Polar Year 2007–2009. pp. 1019–1038.
  48. Løvas S.M., Rubinstein I., Ulstad C., Weather influence on passive microwave brightness temperatures, Polar Research, 1994, Vol. 13, No. 1, pp. 67–81.
  49. Matzler C., editor, Radiative transfer models for microwave radiometry, COST 712: Final Report of Project 1, Bern, Switzerland, February 2000, 176 p.
  50. Meier W.N., Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic Peripheral Seas, IEEE Trans. Geosci. Rem. Sens., 2005, Vol. 43, No. 6, pp. 1324–1337.
  51. Meier W.N., Van Woert M.L., Bertoia1 C., Evaluation of operational SSM/I ice-concentration algorithms, Annals of Glaciology, 2001, Vol. 33, pp. 102–108.
  52. Onstott R.G., Grenfell T.C., Matzler C., Luther C.A., and Svendsen E.A., Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone, Journal of Geophysical Research, 1987, Vol. 92, No. C7, pp. 6825–6835.
  53. Pedersen L.T., Merging microwave radiometer data and meteorological data for improved sea ice concentrations, EARSeL Advances in Remote Sensing, 1994, Vol. 3, No. 2-XII, pp. 81–89.
  54. Powell D.C., Markus T., Cavalieri D.J., Gasiewski A.J., Klein M., Maslanik J.A., Stroeve J.C., and Mathew Sturm, Microwave Signatures of Snow on Sea Ice: Modeling, IEEE Transactions on Geoscience and Remote Sensing, 2006, Vol. 44, No. 11, pp. 3091–3102.
  55. Przybylak R., The Climate of the Arctic. Dordrecht: Kluwer Academic Publishers, 2003, 271 p.
  56. Rees W.G., Remote Sensing of Snow and Ice, New York: Taylor & Francis Group, 2006, 285 p.
  57. Serreze M., Barry R., The Arctic Climate System, Cambridge: University Press, 2005, 385 p.
  58. Shokr M., Lambe A., Tom Agnew T., A New Algorithm (ECICE) to Estimate Ice Concentration from Remote Sensing Observations: an Application to 85 GHz Passive Microwave Data, IEEE Transactions on Geoscience and Remote Sensing, 2008, Vol. 46, No. 12, pp. 4104–4121.
  59. Spreen G., Kaleschke L., and Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 2008, Vol. 113, No. C02S03, DOI:10.1029/2005JC003384.
  60. Sun N., Weng F., Evaluation of Special Sensor Microwave Imager/Sounder (SSMIS) Environmental Data Records, IEEE Transactions on Geoscience and Remote Sensing, 2008, Vol. 46, No. 4, pp. 1006–1016.
  61. Svendsen E., Kloster K., Farrelly B., Johannessen O.M., Johannessen J.A., Campbell W.J., Gloersen P., Cavalieri D.J., Matzler C., Norwegian Remote Sensing Experiment: Evaluation of the Nimbus-7 SMMR for sea ice research, J. Geophys. Res., 1983, Vol. 88(C5), pp. 2781–2791.
  62. Swift C.T., K.St. Germain, K.C. Jezek, S.P. Gogineni, A.J. Gow, D.K. Perovich, T.C. Grenfell, R.G. Onstott, Laboratory Investigations of the Electromagnetic Properties of Artificial Sea Ice, In: Microwave remote sensing of sea ice, Carsey F. D. editor, Washington: American Geophysical Union, 1992, Ch. 9, pp. 61–84.
  63. Teleti P.R., Luis A.J., Sea Ice Observations in Polar Regions: Evolution of Technologies in Remote Sensing, International Journal of Geosciences, 2013, Vol. 4, No. 7, pp. 1031–1050. DOI: 10.4236/ijg.2013.47097.
  64. Thomas D. N., Dieckmann G. S., editors, Sea Ice. Blackwell Publishing. 2003.
  65. Tikhonov V.V., Boyarskii D.A., Repina I.A., Raev M.D., Sharkov E.A., and T.A. Alexeeva, Snow Cover Effect on Brightness Temperature of Arctic Ice Fields Based on SSM/I Data, Progress In Electromagnetics Research Symposium (PIERS), Proceedings, Stockholm, Sweden, Aug. 12–15, 2013, pp. 514–518.
  66. Tikhonov V.V., Boyarskii D.A., Sharkov E.A., Raev M.D., Repina I.A., Ivanov V.V., Alexeeva T.A., Komarova N.Yu., Microwave Model of Radiation from the Multilayer “Ocean-atmosphere” System for Remote Sensing Studies of the Polar Regions, Progress In Electromagnetics Research B, 2014, Vol. 59, pp. 123–133.
  67. Tikhonov V.V., I.A. Repina, M.D. Raev, E.A. Sharkov, V.V. Ivanov, D.A. Boyarskii, T.A. Alexeeva, N.Yu. Komarova, A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Advances in Space Research, 2015, Vol. 56, No. 8, pp. 1578-1589. DOI: 10.1016/j.asr.2015.07.009.
  68. Tucker W.B., T.C. Grenfell, R.G. Onstott, D.K. Perovich, A.J. Gow, R.A. Shuchman, and L.L. Sutherland, Microwave and Physical Properties of Sea Ice in the Winter Marginal Ice Zone, J. Geophysical Research, 1991, Vol. 96, No. C3, pp. 4573–4587.
  69. Turner J., R. Bindschadler, P. Convey, G. di Prisco, E. Fahrbach, J. Gutt, D. Hodgson, P. Mayewski, C. Summerhayes, Eds., Antarctic Climate Change and the Environment, Scientific Committee on Antarctic Research Scott Polar Research Institute, Cambridge, 2009, 526 p.
  70. Voss S., HeygsterG., Ezraty R., Improving sea ice type discrimination by the simultaneous use of SSM/I and scatterometer data, Polar Research, 2003, Vol. 22, No. 1, pp.35-42.
  71. Weng F., Zou X., Yan B., Han Y., Liu Q., Applications of Special Sensor Microwave Imager and Sounder (SSMIS) Measurements in Weather and Climate Studies, Advances in Meteorological Science and Technology, 2011, No. 1, pp. 14–24.