ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 4, pp. 86-96

Variability of sea surface temperature in the South–Eastern Baltic from MODIS data

T.V. Bukanova 1, 2 , Zh.I. Stont 1, 2 , O.A. Goushchin 2 
1 Atlantic Branch of P.P. Shirshov Institute of Oceanology RAS, Калининград, Russia
2 I. Kant Baltic Federal University, Kaliningrad, Russia
The paper focuses on the analysis of interannual, seasonal, and spatial variability of sea surface temperature (SST) in the south–eastern part of the Baltic Sea, including the Curonian and Vistula Lagoons. The data sets are derived from MODIS instrument on Aqua and Terra satellites, and analyzed for 2003–2012. Linear trends of seasonal and interannual SST change are calculated. SST increase is estimated at a rate of 0.70 ± 0.27 °C/decade in the open part of the South–Eastern Baltic. The observed warming is spatially inhomogeneous – the coastal area demonstrates faster warming rates of SST than the open part of the sea. The Curonian and Vistula Lagoons represent significantly lower rates of warming. However, seasonal tendencies of SST change in the Lagoons and the open part of the sea coincide. Correlation between SST and air temperature changes is analyzed. A coincidence of air temperature and SST seasonal development is observed – positive trends occur in the warm period (spring and summer), negative trends – in the cold period (winter and autumn). A strong correlation between MODIS-derived SST and in situ data is detected.
Keywords: sea surface temperature, MODIS, South–Eastern Baltic, interannual variability of SST, seasonal change of SST, SST linear trend, air temperature
Full text

References:

  1. Aleksandrov S., Vliyanie klimaticheskih izmeneniy na uroven’ evtrofirovaniya Kurshskogo zaliva (Climate Change Impact on the Curonian Lagoon Eutrophication Level), Vestnik of Immanuel Kant Russian State University, 2010, Issue 1, pp. 49–57.
  2. Sivkov V.V., Kadzhoyan Yu.S., Pichuzhkina O.E., Fel'dman V.N.. Neft' i okruzhayushchaya sreda Kaliningradskoi oblasti (Oil and environment of the Kaliningrad Region), Kaliningrad: Terra Baltika, 2012, Vol. 2, 576 p.
  3. Stont Zh.I., Demidov A.N. Sovremennye tendentsii izmenchivosti temperatury vozdukha nad akvatoriei Yugo-Vostochnoi Baltiki, Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya, 2015, No. 2, pp. 50–58.
  4. BACC Author Group, Assessment of climate change for the Baltic Sea basin, Berlin: Springer–Verlag, 2008, 473 p.
  5. Backhaus J.O., Climate–sensitivity of European marginal seas, derived from the interpretation of modelling studies, Journal of Marine Systems, 1996, No. 7, pp. 361–382.
  6. Barton I.J., Satellite-derived sea surface temperatures: current status, Journal of Geophysical Research, 1995, No. 100 (C5), pp. 8777–8790.
  7. Belkin I.M., Rapid warming of Large Marine Ecosystems, Progress in Oceanography, 2009, No. 81, pp. 207–213.
  8. Bradtke K., Herman A., Urbański J. A., Spatial and inter–annual variations of seasonal sea surface temperature patterns in the Baltic Sea, Oceanologia, 2010, No. 52 (3), pp. 345–362.
  9. Brown O.B., Minnett P.J., MODIS infrared sea surface temperature algorithm. Tech. Report ATBD25, FL 33149–1098, Miami: University of Miami, 1999, 91 p.
  10. Bulycheva E., Stont Z., Bukanova T., Variations of sea surface temperature and ice conditions in the South-Eastern Baltic over the last decade, Proceedings of Baltic International Symposium IEEE/OES, Tallinn, 2014, pp. 1–10.
  11. Cayan D. R., Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature, J. Phys. Oceanogr, 1992, No. 22, pp. 859–881.
  12. HELCOM, Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region, Baltic Sea Environment Proceedings, 2009, No. 115B, 148 p.
  13. HELCOM, Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013, Baltic Sea Environment Proceedings, 2013, No. 137, 66 p.
  14. Hordoir R., Meier H.E.M., Effect of climate change on the thermal stratification, Climate Dynamics, 2011, No. 38 (9–10), pp. 1–11.
  15. Janssen F., Neumann T., Schmidt M., Interannual variability of cyanobacterial blooms in the Baltic Sea controlled by wintertime hydrographic conditions, Mar. Ecol. Prog. Ser., 2004, No. 275, pp. 9–68.
  16. Kozlov I., Dailidiene I., Korosov A., Klemas V., Mingėlaitė T., MODIS–based sea surface temperature of the Baltic Sea Curonian Lagoon, Journal of Marine Systems, 2012, No. 129, pp. 157–165.
  17. Lehmann A., Getzlaff K., Harlaß. J., Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009, Climate Research, 2011, No. 46, pp. 186–195.
  18. Muren U., Berglund J., Samuelsson K., Andersson A., Potential effects of elevated sea–water temperature on pelagic food webs, Hydrobiologia, 2005, No. 545, pp. 153–166.
  19. Neumann T., Eilola K., Gustafsson B., Muller–Karulis B., Kuznetsov I., Meier M.H.E., Savchuk O.P., Extremes of Temperature, Oxygen and Blooms in the Baltic Sea in a Changing Climate, AMBIO, 2012, No. 41, pp. 574–585.
  20. Omstedt A., Nyberg L., Response of Baltic Sea ice to seasonal, interannual forcing and Climate change, Tellus, 1996, No. 48A (5), pp. 644–662.
  21. Rhein M., Rintoul S.R., Aoki S., Campos E., Chambers D., Feely R.A., Gulev S., Johnson G.C., Josey S.A., Kostianoy A., Mauritzen C., Roemmich D., Talley L.D., Wang F. Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013, pp. 256-315 (1535 p.)
  22. Siegel H., Gerth M., Tschersich. G., Sea surface temperature development of the Baltic Sea in the period 1990–2004, Oceanologia, 2006, No. 48, pp. 119–131.
  23. Störmer O., Climate Change Impacts on Coastal Waters of the Baltic Sea. In G. Schernewski, J. Hofstede, T. Neumann (Eds.), Global Change and Baltic Coastal Zones, Dordrecht: Springer, 2011, Vol. 1, pp. 69.
  24. Tylkowski J., Temporal and spatial variability of air temperature and precipitation at the Polish coastal zone of the southern Baltic Sea, Baltica, 2013, No. 26 (1), pp. 83–94.
  25. Voss R., Petereit C., Schmidt J.O., Lehmann A., Makarchouk A., Hinrichsen H.H., The spatial dimension of climate–driven temperature change in the Baltic Sea and its implication for cod and sprat early life stage survival, Journal of Marine Systems, 2012, No. 100–101, pp. 1–8.
  26. Walther G.R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J., Fromentin J.M., Hoegh–Goldberg O., Bairlein F., Ecological responses to recent climate change, Nature, 2002, No. 416, pp. 389–395.
  27. Wasmund N., Nauch G., Matthäus W., Phytoplankton spring blooms in the southern Baltic Sea–spatio–temporal development and long–term trends, Journal of Plankton Research, 1998, No. 20, pp. 1099–1117.
  28. Wasmund N., Uhlig S., Phytoplankton trends in the Baltic Sea, ICES Journal of Marine Science, 2003, No. 60, pp. 177–186.
  29. Wiktor K., Plinski M., Long–term changes in the biocoenosis of the Gulf of Gdansk, Oceanologia, 1992, No. 32, pp. 69–79.