ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 4, pp. 106-116

Features of interaction of plasma vortices in the atmosphere and ionosphere

N.I. Izhovkina 1 , N.S. Erokhin 2 , L.A. Mikhailovskaya 2 , S.N. Artekha 2 
1 N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Russia
2 Space Research Institute RAS, Moscow, Russia
Electric fields are observed according to the investigation of atmospheric clouds. In an inhomogeneous gyrotropic medium occurrence of vortex structures is stochastically determined. Gyrotropy of atmosphere and ionosphere is caused by the Coriolis force and the motion of charged particles in the geomagnetic field. Vortices of plasma nature are registered in the atmosphere. The origin of the electric field of plasma vortices occurs in the fields of pressure gradients mosaic mesh topology is conditioned by the ionization of particles associated with the solar photon flux and the cosmic radiation. Atmospheric aerosol particles play an important role in generation of vortices. It is shown that the geomagnetic field produces structural changes of an inhomogeneous medium with excitation of plasma vortices and their interaction. During collisions of vortices centered on the same geomagnetic line one powerful vortex can occur. The collision of vortices with centers at different geomagnetic field lines may cause appearance of areas of heating and jet streams production. Since vortices transfer mass and energy, generation of new vortices in an inhomogeneous field of the plasma vortices damping is possible.
Keywords: gyrotropy, plasma vortices, the geomagnetic field, electric fields of the atmosphere, aerosol particles, ionosphere
Full text

References:

  1. Aburdzhania G.D., Samoorganizatsiya nelineinykh vikhrevykh struktur i vikhrevoiturbulentnosti v dispergiruyushchikh sredakh (Self-organizing nonlinear vortex structures and vortex turbulence in dispersive media), Moscow: KomKniga, 2006, 328 p.
  2. Bondur V.G., Pulinets S.A., Kim G.A., O roli variatsii galakticheskikh kosmicheskikh luchei v tropicheskom tsiklogeneze na primere uragana Katrina (On the role of variations of galactic cosmic rays in tropical cyclogenesis on the example of Hurricane Katrina), DAN, 2008, Vol. 422, No. 2, pp. 244–249.
  3. Deirmendjian D., Rasseyanie elektromagnitnogo izlucheniya sfericheskimi polidispersnymichastitsami (Electromagnetic scattering on spherical polydispersions), Moscow: Mir, 1971, 166p.
  4. Erokhin N.S., Mikhailovskaya L.A., Shalimov S.A., Ob usloviyakh prokhozhdeniya vnutrennikh gravitatsionnykh voln cherez vetrovye struktury iz troposfery v ionosferu (On the conditions of internal gravity waves passing through the wind structure from the troposphere to the ionosphere), Geofizicheskie protsessy i biosfera, 2012, Vol. 11, No. 4, pp. 5–22.
  5. Erokhin N.S., Zol'nikova N.N., Mikhailovskaya L.A., Strukturnye osobennosti elektricheskoi turbulentnosti atmosfery pri nalichii kogerentnykh struktur (Structural features of electrical atmospheric turbulence in the presence of coherent structures), International Conference MSS-09 "Mode Conversion, Coherent Structures and Turbulence", Proc. Conf., Moscow: Lenand, 2009, pp. 424–479.
  6. Izhovkina N.I., Potoki energii i chastits v neustoichivoi plazme s vikhrevymi strukturami v verkhnei ionosfere v neodnorodnom geomagnitnom pole (Energy and particle flows in the unstable plasma with vortex structures in the upper ionosphere in an inhomogeneous geomagnetic field), Geomagnetizm i aeronomiya, 2010, Vol. 50, No. 6, pp. 817–824.
  7. Izhovkina N.I., Plazmennye vikhri v ionosfere i atmosfere (Plasma vortices in the ionosphere and atmosphere), Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 6, pp. 817–828.
  8. Kuznetsov G.I., Izhovkina N.I., Dve modeli atmosfernogo aerozolya (Two models of atmospheric aerosol), Izv. AN SSSR. Fizika atmosfery i okeana, 1973, Vol. 9, No. 9, pp. 947–952.
  9. Mikhailovskaya L.A., Erokhin N.S., Krasnova I.A., Artekha S.N., Strukturnye kharakteristiki elektricheskoi turbulentnosti pri vertikal'nom profile elektricheskogo polya s sil'nym vspleskom (Structural characteristics of electrical turbulence for vertical profile of electric field with a strong splash), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 111–120.
  10. Mikhailovskaya L.A., Erokhin N.S., Krasnova I.A., Artekha S.N., Strukturnye kharakteristiki elektricheskoi turbulentnosti v grozovoi oblachnosti (Structural characteristics of electrical turbulence in storm clouds), International Conference MSS-14 "Mode Conversion, Coherent Structures and Turbulence", Proc. Conf., Moscow: Lenand, 2014, pp. 424–429.
  11. Mikhailovskii A.V., Teoriya plazmennykh neustoichivostei. T.2. Neustoichivosti neodnorodnoi plazmy (Theory of plasma instabilities. Vol. 2. Instability of an inhomogeneous plasma), Moscow: Atomizdat, 1977, 312 p.
  12. Moiseev S.S., Sagdeev R.Z., Tur A.V., Yanovskii V.V., Ob integralakh vmorozhennosti i lagranzhevykh invariantakh v gidrodinamicheskom priblizhenii (On frozen-in integrals and Lagrangian invariant in the hydrodynamic approximation), ZhETF, 1982, Vol. 83, No. 1(7), pp. 215–226.
  13. Moiseev S.S., Sagdeev R.Z., Tur A.V., Yanovskii V.V., Teoriya vozniknoveniya krupnomasshtabnykh struktur v gidrodinamicheskoi turbulentnosti (The theory of large-scale structures origin in hydrodynamic turbulence), ZhETF, 1983, Vol. 85, No. 6(12), pp. 1979–1987.
  14. Nezlin M.V., Chernikov G.P., Analogiya dreifovykh vikhrei v plazme i geofizicheskoi gidrodinamike (The analogy of drift vortices in the plasma and geophysical hydrodynamics), Fizika plazmy, 1995, Vol. 21, No. 11, pp. 975–999.
  15. Roederer J.G., Dynamics of geomagnetically trapped radiation, Moscow: Mir, 1972, 192 p.
  16. Artekha S.N., Belyan A.V., On the role of electromagnetic phenomena in some atmospheric processes, Nonlinear Processes in Geophysics, 2013, Vol. 20, pp. 293–304.
  17. Gdalevich G.L., Gubsky V.F., Izhovkina N.I., Ozerov V.D., Experiment and theory of plasma inhomogeneities in mid-latitude ionosphere, J. Atmosph. Terr. and Solar Terrestrial Physics, 1998, Vol. 60, No. 2, pp. 247–252.
  18. Hines C.O., Reddy C.A., On the propagation of atmospheric gravity waves through regions of wind shear, J. Geophys. Res., 1967, Vol. 72, No. 3, pp. 1015–1034.
  19. Narcisi R.S., Szusczewicz E.P., Direct measurements of electron density, temperature and ion composition in an equatorial spread-F ionosphere, J. Atmosph. Terr. Phys., 1981, Vol. 43, No. 5/6, pp. 463–471.