ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 4, pp. 38-47

The impact estimate of satellite information on the quality of numerical weather prediction

S.A. Soldatenko 1 , A.V. Tertyshnikov 2 , N.V. Shirshov 3 
1 Institute of Atmospheric Physics RAS, Moscow, Russia
2 E.K. Fedorov Institute of Applied Geophysics, Moscow, Russia
3 TsENKI, Moscow, Russia
Substantial improvements in the accuracy of numerical weather prediction occurred over the past 10-15 years have been achieved not only by improving the mathematical models and the growth of computing power, but also due to significantly increased amount of available meteorological information, first of all from meteorological satellites. Continuous development of the global observing system and variety of technical equipment by which information is obtained demand estimating the impact of a specific type and source of information on the accuracy of numerical weather prediction. Usually, this problem is solved based on the data denial concept. In this paper, the universal method of estimating the impact of various types of meteorological data on the accuracy of numerical prediction is discussed. This approach is considered in the framework of the four-dimensional variational data assimilation system and is based on the theory of optimal control and adjoint equations. An energy norm is used as a measure of prediction error. The impact of different types of satellite information on the forecast error is discussed. This approach allows quantifying the contribution of each source of meteorological information into the quality of weather forecasting. This allows not only to estimate the strengths and weaknesses of the existing observation network, but also to justify the development of this network, providing the best value for money.
Keywords: variational assimilation, adjoint equations, theory of sensitivity, numerical weather prediction, GPS
Full text

References:

  1. Agoshkov V.I., Parmuzin E.I., Lebedev S.A., Chislennyj algoritm reshenija zadachi usvoyenija operativnyh dannyh nabludenij o temperature poverhnosty Mirovogo okeana (The numerical algorithm for solution of problem in the operational data assimilation of observations the surface temperature of the World ocean), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 4, pp. 9–20.
  2. Marchuk G.I., Chislennoe reshenie zadach dinamiki atmosfery i okeana (Numerical solution of problems of the atmosphere and ocean dynamics), Leningrad: GMI, 1974.
  3. Marchuk G.I., Sopryazheynnye urovnenija i analiz slozhnyh system (Conjugate equations and analysis of complex systems), Moscow: Nauka, 1992.
  4. Penenko V.V., Variatsionnye metody usvoyenija dannyh i obratnye zadachi dlja izuchenija atmosfery, okeana i okruzhajushej sredy (Variational methods for data assimilation and inverse problems for the study of the atmosphere, ocean, and environment), Sibirskij Zhurnal Vychislitelnoj Matematiki, 2009, Vol. 12, No. 4, pp. 421–434.
  5. Penenko V.V., Obraztsov N.N., Variatsionnyj metod soglasovanija poley meteorologicheskih jelementov (Variational method matching fields of meteorological elements), Meteorologija i gidrologija, 1976, No. 11, pp. 3–16.
  6. Timofeyev Yu. M., Global'naja sistema monitoringa parametrov atmosfery i poverhnosti (Global system for monitoring parameters of the atmosphere and surface), Saint Petersburg: Izdatel'stvo Fizicheskogo Fakulteta SPbGU, 2010, 129 p.
  7. Daley R., Atmospheric data analysis, Cambridge University Press, 1993. 472 p.
  8. Baker N. L., Daley R., Observation and background adjoint sensitivity in the adaptive observation targeting problem, Q. J. R. Meteorol. Soc., 2000, Vol. 126, pp. 1431–1454.
  9. Cacuci D.G., Sensitivity and uncertainty analysis. Volume I: Theory, Boca Raton: CRC Press, 2003, 304 p.
  10. Kalnay E., Atmospheric modeling, data assimilation and predictability, Cambridge University Press, 2002, 364 p.
  11. Kelly G., Thepaut J-N., Buizza R., Cardinali C., The value of targeted observations. Part I. Data denial experiments for the Atlantic and the Pacific, Q. J. R. Meteorol. Soc., 2007, Vol. 133, pp. 1803–1815.
  12. Langland R. H., Baker N., Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system, Tellus, 2004, Vol. 56A, pp. 189–201.
  13. Lorenz E.N., Deterministic non-periodic flow, J. Atmos. Science, 1963, Vol. 20, pp. 130–141.
  14. Navon I.M., Data assimilation for numerical weather prediction: a review, In: Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications, Eds. S.K. Park, X. Liang. New York: Springer-Verlag, 2009, pp. 21-65.
  15. Nichols N.K., Mathematical concepts of data assimilation, In: Data assimilation, Eds. W. Lahos et al., Berlin-Heidelberg: Springer-Verlag, 2010, pp. 13-39.
  16. Joo S., Eyre J., Marriott R., The impact of MetOp and other satellite data within the Met Office Global NWP system using an adjoint-based sensitivity method, Mon. Wea. Rev., 2013, Vol. 141, pp. 3331–3342.