ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 101-112

Mesoscale polar lows over the Eastern Arctic Sector according to multisensor satellite remote sensing

I.A. Gurvich1 , E.V. Zabolotskikh2 
1 V.I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Hydrometeorological University, Saint-Petersburg, Russia
The mesoscale cyclonic activity over the eastern Arctic seas is analyzed using multisensor satellite remote sensing data, synoptic maps of surface analysis, baric topography and reanalysis data. Statistical estimates are obtained for mesocyclones of August–October 2012–2013, identified on Aqua and Terra MODIS and NOAA AVHRR visible and infrared images. Quantitative estimates of the oceanic and atmospheric parameters are obtained from satellite passive microwave measurements using original algorithms. A comprehensive analysis of multisensory satellite data and contiguous information is used detect the new areas of mesocyclone occurrence and spread in association with the warming Arctic climate and reduced ice cover. Preliminary statistical estimates of mesocyclone dominant size, structure and form of the cloud system are obtained. A detailed analysis of several case studies revealed the regional conditions of their forming and development, and differences from the general laws governing mesocyclone features in the traditional areas of their development. Further investigation is very important due to intensification of the use of the Russian Arctic seas, and the danger of intense mesocyclones to shipping and coastal national economic activity in this region.
Keywords: mesocyclones, eastern Arctic, multisensor satellite remote sensing, water vapor, cloud liquid water, sea surface wind
Full text

References:

  1. Gurvich I.A., Mitnik L.M., Mitnik M.L. Mezomasshtabnyj ciklogenez nad dal'nevostochnymi morjami: issledovanie na osnove mikrovolnovyh radiometricheskih i radiolokacionnyh izmerenij (Mesoscale cyclogenesis over The Far Eastern Seas: study based on satellite microwave radiometric and radar measurements), Issledovanie Zemli iz kosmosa, 2008, No. 5, pp. 58–73.
  2. Gurvich I.A., Mitnik L.M., Mitnik M.L. Mezomasshtabnyj ciklogenez nad Japonskim morem 7–13 janvarja 2009 g. po sputnikovym mul'tisensornym dannym (Mesoscale cyclogenesis over the Japan Sea on 7-13 January 2009 from satellite multisensory data), Issledovanie Zemli iz kosmosa, 2010, No. 4, pp. 11–22.
  3. Gurvich I.A., Pichugin M.K. Issledovanie sravnitel'nyh harakteristik tipichnyh mezomasshtabnyh ciklonov nad dal'nevostochnymi morjami na osnove sputnikovogo mul'tisensornogo zondirovanija (Study of comparative characteristics of the mesoscale cyclones over the Far Eastern seas on the basis of multisensory satellite remote sensing), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10. No. 1, pp. 51–59.
  4. Zabolotskikh E.V., Gurvich I.A., Chapron B. Novye rajony rasprostranenija poljarnyh ciklonov v Arktike kak rezul'tat sokrashhenija ploshhadi ledjanogo pokrova (New Areas of Polar Lows Over the Arctic as a Result of Sea Ice Extent Decrease), Issledovanie Zemli iz kosmosa, 2015, No. 2, pp. 1–14.
  5. Zimich P.I. Atmosfernye process ipogoda Vostochnoj Arktiki (Atmospheric processes and weather Eastern Arctic), Vladivostok: Dal’nauka, 1998, 236 p.
  6. Zimich P.I. Uragany poberezh'ja Chukotki i ih prognozirovanie (Hurricanes of Chukotka coast and their forecasting), Magadan: Dal’nauka, 2002, 174 p.
  7. Ivanov V.V., Alexeev V.A., Alexeeva T.A., Koldunov N.V., Repina I.A., Smirnov A.V. Arkticheskij ledjanoj pokrov stanovitsja sezonnym? (Does Arctic Ocean Ice Cover Become Seasonal?), Issledovanie Zemli iz kosmosa, 2013. No. 4, pp. 50–65.
  8. Mokhov I.I., Akperov M.G., Lagun V.E., Lutsenko E.I. Intensivnye arkticheskie mezociklony (Intense Arctic mesocyclones), Izvestiya RAN, Physics Atmosphere and Ocean, 2007, Vol. 43, No. 3, pp. 291–297.
  9. Blechschmidt A.M. A 2year climatology of polar low events over the Nordic Seas from satellite remote sensing, Geophys. Res. Lett., 2008, Vol. 35, No. 9, doi:10.1029/2008gl033706.
  10. Bobylev L.P., Zabolotskikh E.V., Mitnik L.M., Mitnik M.L. Arctic Polar Low Detection and Monitoring Using Atmospheric Water Vapor Retrievals from Satellite Passive Microwave Data, IEEE Trans. Geosci. Rem. Sens., 2011, Vol. 49, No. 9, pp. 3302–3310.
  11. Chechin D.G., Lüpkes C., Repina I.A., Gryanik V.M. Idealized dry quasi 2D mesoscale simulations of cold air out breaks over the marginal sea ice zone with fine and coarse resolution, J. Geophys. Res. Atm., 2013, Vol, 118, No. 16, pp. 8787–8813.
  12. Claud C., Heinemann G., Raustein E. Mcmurdie L. Polar low le Cygne: Satellite observations and numerical simulations, Quart. J. Royal Meteorol. Soc., 2004, Vol.130, No. 598, pp. 1075–1102.
  13. Condron A., Renfrew I.A. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation, Nat. Geosci., 2013, Vol. 6, No. 1, pp. 34–37.
  14. Harold J.M., Bigg G.R., Turner J. Mesocyclone activity over the northeast Atlantic. Part 1: Vortex distribution and variability, J. Climatology, 1999, Vol. 19, No. 11, pp. 1187–1204.
  15. Kolstad E.W., Bracegirdle T.J., Seierstad I.A. Marine cold air outbreaks in the North Atlantic: temporal distribution and associations with largescale atmospheric circulation, Clim. Dyn., 2009, Vol. 33, No. 2–3, pp. 187–197.
  16. Mitnik L.M., Mitnik M.L., Gurvich I.A. Passive and active microwave sensing of winter mesoscale cyclones over the ocean, Proc. IGARSS’06, Denver, Colorado, 31 July–4 August, 2006.
  17. Montgomery M.T., Farrell B.F. Polar low dynamics, J. Atmos. Science, 1992, Vol. 49, No. 24, pp. 2484-2505.
  18. Ninomiya K., Wakahara K., Ohkubo H. Meso-a-scale low development over the northeastern Japan Sea under the influence of a parent large-scale low and a cold vortex aloft, J. Meteor. Soc. Japan, 1993, Vol. 71, pp. 73–91.
  19. Overland J.E., Wang M. Large scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice, Tellus A, 2010, Vol. 62, No. 1, pp. 1–9.
  20. Rasmussen E.A., Turner J. Polar lows: mesoscale weather systems in the polar regions, Cambridge: Cambr. Univ. Press, 2003, 612 p.
  21. Zabolotskikh E.V., Mitnik L.M., Chapron B. New approach for severe marine weather study using satellite passive microwave sensing, Geophys. Res. Lett., 2013, Vol. 40, No. 13, pp. 3347–3350.
  22. Zahn M., von Storch H. Investigation of Past and Future Polar Low Frequency in the North Atlantic, Extreme Events and Natural Hazards: The Complexity Perspective, Eds. A.S. Sharma et al., Geophys. Monogr. Ser. 196, Amer. Geophys. Union, 2013, pp. 99–110.