ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 113-128

Studies of Kamchatka volcanic eruptions products using hyperspectral satellite data in VolSatView information system

E.I. Gordeev1 , O.A. Girina1  , E.A. Loupian2  , A.V. Kashnitskiy2  , I.A. Uvarov2  , V.Yu. Efremov2  , D.V. Melnikov1  , A.G. Manevich1  , A.А. Sorokin3  , A.L. Verkhoturov3  , I.M. Romanova1  , L.S. Kramareva4  , S.P. Korolev3 
1 Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky, Russia
2 Space Research Institute RAS, Moscow, Russia
3 Computing Center of Far Eastern Branch RAS, Khabarovsk, Russia
4 Far Eastern Center of Planeta Research Center for Space Hydrometeorology, Khabarovsk, Russia
Annually in Kamchatka from three to eight volcanoes are in eruptions or in a state of unrest. Multidisciplinary study of each eruption encompassing the history and evaluation of geological effect with the detailed examination of volcanogenic products is needed to assess the dynamics of volcanic activity and hazard to population. The combined efforts of experts from IVS FEB RAS, IKI RAS, CC FEB RAS and FEC FSI RCSH “Planeta” led to the development of the information system called Monitoring of Activity of Kamchatkan Volcanoes (VolSatView, http://volcanoes.smislab.ru). The system allows working with various satellite data of mid to high resolution, meteorological and instrumental information from on-ground observation networks and to conduct combined analyses of diverse data. Currently, the VolSatView features an advanced instrumental base for the analyses of hyperspectral data that could be applied for the examination of volcanic activity. This paper illustrates application of the VolSatView in studying eruptive products of the Northern group of Kamchatka volcanoes (ex. pyroclastic and lava formations) based on hyperspectral satellite data. It is found that spectral reflectivity is indicative of pyroclastic rocks of andesitic composition, whereas spectral brightness is more informative in examination of fresh hot lava. Basaltic and andesitic lavas differ in spectral parameters, for example, in profile configurations of spectral brightness and their values.
Keywords: volcanoes of Kamchatka, activity of volcanoes, volcanogenic products, hyperspectral satellite data, remote sensing systems, information system
Full text

References:

  1. Andreev M.V., Efremov V.Yu., Loupian E.A., Mazurov A.A., Naglin Yu.F., Proshin A.A., Flitman E.V. Postroenie interfeisov dlya organizatsii raboty s arkhivami sputnikovykh dannykh udalennykh pol'zovatelei (The construction of interfaces for work of remote users with satellite data archives), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2000, No. 1, pp. 514-520.
  2. Balashov I.V., Khalikova O.A., Burtsev M.A., Loupian E.A., Matveev A.M. Organizatsiya avtomaticheskogo polucheniya naborov informatsionnykh produktov iz tsentrov arkhivatsii i rasprostraneniya sputnikovykh i meteodannykh (Organization of automatic data acquisition from satellite and meteorological data archiving and distribution centers), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol.10, No. 3, pp. 9-20.
  3. Girina O.A. O predvestnike izverzhenii vulkanov Kamchatki, osnovannom na dannykh sputnikovogo monitoringa (On precursor of Kamchatkan volcanoes eruptions based on data from satellite monitoring), Vulkanologiya i seismologiya, 2012, No. 3, pp. 14–22.
  4. Girina O.A., Gordeev E.I. Proekt KVERT – snizhenie vulkanicheskoi opasnosti dlya aviatsii pri eksplozivnykh izverzheniyakh vulkanov Kamchatki i Severnykh Kuril (KVERT project: reduction of volcanic hazards for aviation from explosive eruptions of Kamchatka and Northern Kuriles volcanoes), Vestnik DVO RAN, 2007, Vol. 132, No. 2, pp. 100-109.
  5. Gordeev E.I., Girina O.A. Vulkany i ikh opasnost' dlya aviatsii (Volcanoes and their hazard to Aviation), Vestnik Rossiiskoi akademii nauk, 2014, Vol. 84, No. 2, pp. 134-142, doi: 10.7868/S0869587314020121.
  6. Gordeev E.I., Girina O.A., Loupian E.A., Sorokin A.A., Efremov V.Yu., Mel'nikov D.V., Manevich A.G., Romanova I.M., Korolev S.P., Kramareva L.S. Vozmozhnosti ispol'zovaniya dannykh giperspektral'nykh sputnikovykh nablyudenii dlya izucheniya aktivnosti vulkanov Kamchatki s pomoshch'yu geoportala VolSatView (Possibility of using hyperspectral data from satellite observations to study activity of Kamchatka volcanoes on the basis of the VolSatView geoportal), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 267-284.
  7. Egorov V.A., Il'in V.O., Loupian E.A., Mazurov A.A., Flitman E.V. Vozmozhnosti postroeniya avtomatizirovannykh sistem obrabotki sputnikovykh dannykh na osnove programmnogo kompleksa XV_SAT (Possibility of construction of computer-aided systems for processing satellite data with help XV_SAT), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, No. 1, pp. 431-436.
  8. Eremeev V.A., Mordvintsev I.N., Platonov N.G. Sovremennye giperspektral'nye sensory i metody obrabotki giperspektral'nykh dannykh (Modern hyperspectral sensors and method of processing hyperspectral data), Issledovaniye Zemli iz kosmosa, 2003, No. 6, pp. 80-90.
  9. Efremov V.Yu., Girina O.A., Kramareva L.S., Loupian E.A. , Manevich A.G., Matveev A.M., Mel'nikov D.V., Proshin A.A., Sorokin A.A., Flitman E.V. Sozdanie informatsionnogo servisa "Distantsionnyi monitoring aktivnosti vulkanov Kamchatki i Kuril" (Creating an information service “Remote monitoring of active volcanoes of Kamchatka and the Kuril Islands”), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 155-170.
  10. Efremov V.Yu., Loupian E.A., Mazurov A.A., Proshin A.A., Flitman E.V. Tekhnologiya postroeniya avtomatizirovannykh sistem khraneniya sputnikovykh dannykh (The Technology of construction of computer-aided systems for satellite data storage), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, No. 1, pp. 437-443.
  11. Kashnitskii A.V., I.V. Balashov, E.A. Loupian, V.A. Tolpin, I.A. Uvarov, Sozdanie instrumentov dlya udalennoi obrabotki sputnikovykh dannykh v sovremennykh informatsionnykh sistemakh (Creating tools for remote processing of satellite data in modern information systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 156-170.
  12. Korolev S.P., Sorokin A.A., Verkhoturov A.L., Konovalov A.V., Shestakov N.V. Avtomatizirovannaya informatsionnaya sistema dlya raboty s instrumental'nymi dannymi regional'noi seti seismologicheskikh nablyudenii DVO RAN (Automated information system for instrument data processing of regional seismic observation network FEB RAS), Seismicheskie pribory, 2014, Vol. 50, No 3, pp. 30-41.
  13. Loupian E.A., Mazurov A.A., Nazirov R.R., Proshin A.A., Flitman E.V. Tekhnologiya postroeniya avtomatizirovannykh informatsionnykh sistem sbora, obrabotki, khraneniya i rasprostraneniya sputnikovykh dannykh dlya resheniya nauchnykh i prikladnykh zadach (The technology of automated information systems for collecting, processing, storage and dissemination of satellite data for scientific and applied problems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, No. 1, pp. 81-88.
  14. Loupian E.A., Mazurov A.A., Nazirov R.R., Proshin A.A., Flitman E.V., Krasheninnikova Yu.S. Tekhnologii postroeniya informatsionnykh sistem distantsionnogo monitoringa (Technology of construction of remote monitoring information systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 26-43.
  15. Loupian E.A., Matveev A.M., Uvarov I.A., Bocharova T.Yu., Lavrova O.Yu., Mityagina M.I. Sputnikovyi servis See the Sea – instrument dlya izucheniya protsessov i yavlenii na poverkhnosti okeana (The Satellite Service See the Sea - a tool for the study of oceanic phenomena and processes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 251-262.
  16. Loupian E.A., Milekhin O.E., Antonov V.N., Kramareva L.S., Burtsev M.A., Balashov I.V., Tolpin V.A., Solov'ev V.I. Sistema raboty s ob"edinennymi informatsionnymi resursami, poluchaemymi na osnove sputnikovykh dannykh v tsentrakh NITs “Planeta” (The system works with the combined information resources derived from satellite data centers SIC "Planeta"), Meteorologiya i gidrologiya, 2014, No. 12, pp. 89-97.
  17. Nosenko Yu.I., Loshkarev P.A. Edinaya territorial'no-raspredelennaya informatsionnaya sistema DZZ - problemy, resheniya, perspektivy (chast' 1) (Single geographically distributed information system of remote sensing - problems, solutions, prospects (part 1)), Geomatika, 2010, No. 3, pp. 35-42.
  18. Romanova I.M. Geoportal IViS DVO RAN kak edinaya tochka dostupa k vulkanologicheskim i seismologicheskim dannym (IVS FEB RAS Geoportal as a single point of access to volcanological and seismological data), Geoinformatika, 2013, No. 1, pp. 46-54.
  19. Romanova I.M., Girina O.A., Maksimov A.P., Melekestsev I.V. Sozdanie kompleksnoi informatsionnoi veb-sistemy “Vulkany Kurilo-Kamchatskoi ostrovnoi dugi (VOKKIA)” (Creation of complex information web system “Volcanoes of the Kurile-Kamchatka Island Arc (VOKKIA)”), Informatika i sistemy upravleniya, 2012, Vol. 33, No. 3, pp. 179-187.
  20. Sorokin A.A., Korolev S.P., Mikhailov K.V., Konovalov A.V. Avtomatizirovannaya informatsionnaya sistema otsenki sostoyaniya seti instrumental'nykh seismologicheskikh nablyudenii “Signal-S” (SIGNAL-S – Automated information system for seismological data processing), Informatika i sistemy upravleniya, 2010, No. 4 (26), pp. 161-167.
  21. Tolpin V.A., Balashov I.V., Efremov V.Yu., Loupian E.A., Proshin A.A., Uvarov I.A., Flitman E.V. Sozdanie interfeisov dlya raboty s dannymi sovremennykh sistem distantsionnogo monitoringa (sistema GEOSMIS) (Creation of interfaces for work with moderate remote monitoring systems data (GEOSMIS)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 93-108.
  22. Tronin A.A., Gornyi V.I., Kritsuk S.G., Latypov I.Sh. Spektral'nye metody distantsionnogo zondirovaniya v geologii. Obzor (Spectral remote sensing for mineral exploration. A review), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 23-36.
  23. Uvarov I.A., Matveev A.M., Burtsev M.A., Loupian E.A., Mazurov A.A., Proshin A.A., Savorskii V.P., Sudneva O.A. Organizatsiya raspredelennoi raboty s dannymi sputnikovykh giperspektral'nykh nablyudenii dlya resheniya nauchnykh i prikladnykh zadach (Distributed data management of hyperspectral remote sensing data for scientific purposes and applications), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 322-333.
  24. Uvarov I.A., Khalikova O.A., Balashov I.V., Burtsev M.A., Loupian E.A., Matveev A.M., Platonov A.E., Proshin A.A., Tolpin V.A., Krasheninnikova Yu.S. Organizatsiya raboty s meteorologicheskoi informatsiei v informatsionnykh sistemakh distantsionnogo monitoringa (Organization of work with a meteorological information in remote monitoring information systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 30-45.
  25. Khanchuk A.I., Sorokin A.A., Smagin S.I., Korolev S.P., Makogonov S.V., Tarasov A.G., Shestakov N.V. Rasvitie informatsionno-telekommunikatsionnyh system v DVO RAN (Development of information and telecommunication systems in the Far Eastern Branch of RAS), Informatsionnye tehnologii i vychislitelnye sistemy, 2013, No. 4, pp. 45-57.
  26. Abrams M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform, International Journal of Remote Sensing, 2000, Vol. 21 (5), pp. 847-859. doi: 10.1080/014311600210326
  27. Abrams, M., Pieri, D., Realmuto, V., Wright, R. Using EO-1 Hyperion data as HyspIRI preparatory data sets for volcanology applied to Mt. Etna, Italy, J. Selected Topics in Applied Earth Observations and Remote Sensing, 2013, Vol. 6, pp. 375-385.
  28. Carter A.J., Girina O.A., Ramsey M.S., Demyanchuk Y.V. ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia, Remote Sensing of Environment, 2008, Vol. 112, pp. 2569–2577.
  29. Flynn, L.P., Harris, A. J., Rothery, D.A., and Oppenheimer, C. High-spatial-resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data, Geophysical Monograph Series, 2000, Vol. 116, pp. 161-177.
  30. Flynn, L. P., Harris, A. J., and Wright, R. Improved identification of volcanic features using Landsat 7 ETM+, Remote Sensing of Environment, 2001, Vol. 78 (1), pp. 180-193.
  31. Flynn, L.P., Mouginis-Mark, P.J., and Horton, K.A. Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991, Bulletin of Volcanology, 1994, Vol. 56 (4), pp. 284-296.
  32. Jay J. A., Welch M., Pritchard M. E., Mares P. J., Mnich M. E., Melkonian A. K., Aguilera F., Naranjo J. A., Sunagua M., Clavero J. Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000 and 2010, Geological Society, London, Special Publications, 2013, Vol. 380, pp. 161-185. doi: 10.1144/SP380.1
  33. Harris, A.J., Flynn, L.P., Keszthelyi, L., Mouginis-Mark, P.J., Rowland, S. K., and Resing, J.A. Calculation of lava effusion rates from Landsat TM data, Bulletin of Volcanology, 1998, Vol. 60 (1), pp. 52-71.
  34. Lombardo, V., Buongiorno, M.F., Pieri, D., and Merucci, L. Differences in Landsat TM derived lava flow thermal structures during summit and flank eruption at Mount Etna, Journal of Volcanology and Geothermal research, 2004, Vol. 134 (1), pp. 15-34.
  35. Miller T.P., Casadevall T.J., Volcanic ash hazards to aviation. Encyclopedia of Volcanoes. Academic Press, San Diego, California, 2000, pp. 915-930.
  36. Neal Ch., Girina O., Senyukov S., Rybin A., Osiensky J., Izbekov P., Ferguson G. Russian eruption warning systems for aviation, Natural Hazards. Springer Netherlands, 2009, Vol. 51, No. 2, pp. 245-262.
  37. Ninomiya Y., Fu B., Cudahy T.J. Directing lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multi-spectral thermal infrared ‘radiance-at-sensor’ data, Remote Sensing of Environment, 2005, Vol. 99, No. 1-2, pp. 127-139.
  38. Oppenheimer C. Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989), Journal of Geophysical Research: Solid Earth (1978–2012), 1991, Vol. 96 (B13), pp. 21865-21878.
  39. Ramsey, M.S. and Harris, A.J.L., Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade, Journal of Volcanology and Geothermal research, 2013, Vol. 249, pp. 217-233.
  40. Ramsey M., and Dehn J. Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR, Journal of Volcanology and Geothermal Research, 2004, Vol. 135 (1–2), pp. 127–146. doi:10.1016/j.jvolgeores.2003.12.014
  41. Ramsey, M.S., Wessels, R.L. and Anderson, S.W. Surface textures and dynamics of the 2005 lava dome at Shiveluch Volcano, Kamchatka, Geol. Soc. Amer. Bull., 2012, doi:10.1130/B30580.1
  42. Rowan L.C., Simpson C. J., Mars J. C. Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordor, NT, Australia, Remote Sensing of Environment, 2004, Vol. 91, No. 3-4, pp. 419-431.
  43. Wright, R., H. Garbeil, and Davies, A.G. Cooling rate of some active lavas determined using an orbital imaging spectrometer, Journal of Geophysical Research (Solid Earth), 2010, Vol. 115, B06205. doi:10.1029/2009JB006536.
  44. Sorokin A.A., Korolev S.P., Mikhaylov K.V., Konovalov A.V. “SIGNAL-S” – Automated information system for seismological data processing, First Russia and Pacific Conference on Computer Technology and Applications (RussiaPacificComputer 2010) , 6-9 September, 2010, Vladivostok: FEB RAS, 2010, pp. 283-284.
  45. Vaughan R.G., Hook S.J., Calvin W.M., Taranik J.V. Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images, Remote Sensing of Environment, 2005, Vol. 99, No. 1-2, pp. 140-158.
  46. Wright, R., Glaze, L., and Baloga, S.M. Constraints on determining the eruption style and composition of terrestrial lavas from space, Geology, 2011, Vol. 39, pp. 1127-1130.
  47. Urai M., Fukui K., Yamaguchi Y., Pieri D.C. Volcano observation potential and global volcano monitoring plan with ASTER, Bulletin of the Volcanological Society of Japan, 1999, Vol. 44, pp. 131–141.