ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 76-99

Influence of wind and hydrodynamic processes on propagation of the Vistula Lagoon waters into the Baltic Sea

O.Yu. Lavrova1 , E.V. Krayushkin1,2 , D.M. Soloviev3 , M.N. Golenko4 , N.N. Golenko4 , N.A. Kalashnikova1 , A.N. Demidov2 
1 Space Research Institute RAS, Moscow
2 Lomonosov Moscow State University, Moscow
3 Marine Hydrophysical Institute, Sevastopol
4 Atlantic Branch of the P.P. Shirshov Institute of Oceanology RAS, Kaliningrad
The influence of wind and hydrodynamic processes on propagation of coastal turbid waters from the Vistula Lagoon into the Baltic Sea was studied. The research was based on joint analysis of remote sensing data, simultaneous subsatellite measurements and numerical modeling. The sharp difference in water optical properties of the Baltic Sea and the Vistula Lagoon, affected by intense summer bloom of cyanobacteria, make it possible to study the evolution and transformation of the outflow in July - early August 2014 using visible satellite data. Forced by coastal jet streams, the outflow spread throughout the Bay of Gdansk, dramatically affected by the circulation processes in the bay. A three-dimensional structure of the outflow was analyzed. In-situ measurements revealed the presence of the Vistula waters exclusively at the upper water layer. A numerical simulation of suspended matter spreading over the Bay of Gdansk was performed using a modified Princeton Ocean model (POM) considering nothing but the wind force influence on the matter transfer. The simulation results showed that taking into account the whole range of hydrodynamic features, first of all local vortical structures, is essential for appropriate description of the Vistula outflow process.
Keywords: remote sensing, sea surface, the Baltic Sea, algal bloom, near-shore circulation, suspended matter drift, subsatellite measurements, numerical modeling, OLI/TIRS Landsat-8, MODIS Aqua/Terra
Full text

References:

  1. Golenko N.N., Golenko M.N., Shchuka S.A., Nablyudeniye I modelirovaniye apvellinga v Yugo-Vostochnoy Baltike (Observation and modeling of upwelling in the Southeastern Baltic), Okeanologiya, 2009, Vol. 49, No. 1, pp. 15-21.
  2. Golenko M.N., Golenko N.N., O structure dinamicheskich poley v yugo-vostochnoy Baltike pri vetrovych vozdeystviyah, privodyashchih k apvellingu i daunvellingu (Structure of dynamic fields in the Southeastern Baltic during wind forcings that cause upwelling and downwelling), Okeanologiya, 2012, Vol. 52, No. 5, pp. 604-616.
  3. Gurova E. S., Ivanov A.Yu., Osobennosti projavlenija gidrodinamicheskih struktur v jugo-vostochnoj chasti Baltijskogo morja po dannym spektroradiometrov MODIS i kosmicheskoj radiolokacii (Appearance of Sea Surface Signatures and Current Features in the South-East Baltic Sea on the MODIS and SAR images), Issledovanie Zemli iz kosmosa, 2011, No. 4, pp. 41-54.
  4. Demidov A.N., Myslenkov S.A., Gricenko V.A., Chugaevich V.Ja., Sultanov P.A., Pisareva M.N., Sil'vestrova K.P., Poluhin A.A., Osobennosti struktury i dinamiki vod pribrezhnoj chasti Baltijskogo morja vblizi Sambijskogo poluostrova (Specific features of water structure and dynamics within the coastal part of the Baltic Sea near the Sambian Peninsula), Vestnik MGU, 2011, Seriya 5. Geografija, No. 1, pp. 41-47.
  5. Dobrovol'skij A.D., Zalogin B.S., Morja SSSR (Seas of USSR), Moscow: MGU, 1982, 192 p.
  6. Esiukova, E.E. Rezul'taty ezhenedel'nogo monitoringa poberezh'ja Vislinskogo zaliva v rajone pos. Pribrezhnyj v 2011-2012 godah (Results of weekly monitoring of the coast of Vistula Lagoon near the Pribrezhnyj settlement in 2011-2012), Vestnik Baltijskogo Federal'nogo Universiteta im. I. Kanta, 2013, No. 1, pp. 82-91.
  7. Lazarenko N. N., Maevskij A. (Eds)., Gidrometeorologicheskij rezhim Vislinskogo zaliva (Hydrometeorological mode of Vistula Lagoon), Leningrad: Gidrometeoizdat, 1971, 279 p.
  8. Kalashnikova N.A., Lavrova O.Yu., Mityagina M.I., Serebryany A.N. Vlijanie vihrevyh struktur na rasprostranenie zagrjaznenij v pribrezhnoj zone (Influence of the vortex structures on the spread of pollution in the coastal zone), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 228-240.
  9. Lavrova O. Yu., Kostyanoi A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Kompleksnyi sputnikovyi monitoring morei Rossii (Complex satellite monitoring of the Russian Seas), Moscow: IKI RAN, 2011, 470 p.
  10. Savchuk O.P., Issledovanie jevtrofikacii Baltijskogo morja, Issledovanie okeanov i morej: Trudy GOIN, 2005, Issue 209, pp. 272-285.
  11. Bedritskii, A.I., Asmus, V.V., Krovotyntsev, V.A., Lavrova, O.Yu., Ostrovskii, A.G., Satellite monitoring of pollution in the Russian sector of the Azov and Black Seas in 2003-2007, Russian Meteorology and Hydrology, 2007, Vol. 32, Issue 11, pp. 669-674.
  12. Blumberg A.F., Mellor G.L. A Description of a Three-Dimensional Coastal Ocean Circulation Model, Washington, DC: American Geophysical Union, 1987, pp. 1-16.
  13. Chubarenko, B., Margonski, P., The Vistula Lagoon. In: U. Schiewer (ed.) Ecology of Baltic Coastal Waters. Ecological Studies, 197, Springer-Verlag, 2008. pp. 167-195.
  14. Finni, T., Kononen, K., Olsonen, R., and Wallström, K., The history of cyanobacterial blooms in the Baltic Sea, Ambio, 2001, Vol. 30, pp. 172–178.
  15. Kahru, M. and Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 2014, No. 11, pp. 3619-3633.
  16. Kostianoy A.G., Lavrova O.Yu., Mityagina M.I., Solovyov D.M., Lebedev S.A. Satellite monitoring of oil pollution in the Southeastern Baltic Sea, Oil Pollution in the Baltic Sea, A.G. Kostianoy and O.Yu. Lavrova (Eds.), Springer-Verlag, 2013, Vol. 27. pp. 125-154.
  17. Larsson U., Elmgren R., Wulff F., Eutrophication and the Baltic Sea: causes and consequences, Ambio, 1985, Vol. 14 (1), pp .9-14.
  18. Lavrova O., Karimova S., Mityagina M. Eddy activity in the Baltic Sea retrieved from satellite SAR and optical data, Proc. 3rd Intern. Workshop SeaSAR 2010, Ed.: ESA, 2010, Special Publication ESA-SP-679, 5 p.
  19. Lavrova O., Mityagina M., Bocharova T., Gade M. Multichannel observation of eddies and mesoscale features in coastal zones, Remote sensing of the European Seas, V. Barale & M. Gade (Eds.), Springer Verlag, 2008, pp. 463-474.
  20. Mellor G.L., Yamada T., Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys. 1982, Vol. 20, pp. 851-875.
  21. Schiewer U. (Ed.) Ecology of Baltic Coastal Waters. Ecological Studies, Vol. 197, Springer-Verlag, 2008, 430 p.
  22. Shcherbak S.S., Lavrova O.Yu., Mityagina M.I., Bocharova T.Yu., Krovotyntsev V.A, Ostrovskii A.G., Multisensor satellite monitoring of seawater state and oil pollution in the northeastern coastal zone of the Black Sea, International Journal of Remote Sensing, 2008, Vol. 29, Issue 21, pp. 6331 – 6345.
  23. Zhurbas V., Laanemets J., Vahtera E. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 2008, Vol. 113, No. C5, doi:10.1029/2007JC004280.