ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 244-253

Analysis of the seasonal dynamics of NDVI index and the reflective properties of corn in the Belgorod Region

E.A. Terekhin 
Belgorod State National Research University
Federal and Regional Centre for Aerospace Monitoring of Natural Resources
Belgorod 308015, Russia
The results of studies of the dynamics of spectral index NDVI for crops of corn grown in the Belgorod region are presented. NDVI values based on the MOD13Q1 obtained on the basis of MODIS data at intervals of 16 days were studied. Seasonal values of the spectral index in the period from March 5 to December 2, 2012 on the basis of data from 150 agricultural fields were analyzed. The study showed that the maximum value of the index for corn in the region is characterized by a period of the end of June and the first half of July. In the same period, the index values for corn are the least spread around the mean value for the entire period of vegetation. It is established that the fields with corn differing in terms of the sowing season, differ significantly by the values NDVI till the beginning / the first half of July. Analysis of the spectral reflection properties of corn from Landsat ETM+ data shows that in the Belgorod region in the first half of July, the spectral characteristics of corn are maximally different from the spectral characteristics of other cultures in the near and mid-infrared ranges. By the end of July, such differences are not observed.
Keywords: corn, remote sensing data, NDVI, Landsat ETM+, MODIS, Belgorod region.
Full text


  1. Bartalev S.A., Loupian E.A., Neyshtadt I.A., Savin I.Y. Distantsionnaya otsenka parametrov sel'skokhozyaystvennykh zemel' po sputnikovym dannym spektroradiometra MODIS (Re-mote parameter estimation of agricultural land based on satellite data spectroradiometer MODIS), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Vol. 2, No. 2, pp. 228-236.
  4. Zhukova Y.Y., Belousova E.A., Musikhina M.O., Sysoyeva J.V. Kharakteristika agrotseno-zov Koybal'skoy stepi respubliki Khakasiya (Characteristics of Agrocenosises of Koybal-skaya Steppe in the Republic of Khakasia), Vestnik Khakasskogo gosudarstvennogo uni-versiteta im. N.F. Katanova, 2012, No. 2, pp. 9-11.
  5. Kleshchenko A.D., Naidina T.A., Goncharova T.A. Ispol'zovaniye dannykh distantsionnogo zondirovaniya dlya modelirovaniya produktsionnogo protsessa kukuruzy (Use of remotely-sensed data for modeling crop production of maize), Sovremennye problemy distantsion-nogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 259-268.
  6. Leontyev A.A. Sistema sputnikovogo monitoringa sostoyaniya poley i prognozirovaniya urozhaynosti (Satellite monitoring system status fields and forecasting yields), Geomatika, 2013, No. 2, pp. 77-79.
  7. Terekhin E.A. Informativnost' spektral'nykh vegetatsionnykh indeksov dlya deshifrirovaniya sel'skokhozyaystvennoy rastitel'nosti (The efficiency of spectral indices for interpretation ag-ricultural vegetation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kos-mosa, 2012, Vol. 9, No. 4, pp. 243-248.
  8. Terekhin E.A. Analiz spektral'nykh svoystv sel'skokhozyaystvennoy rastitel'nosti Belgorodskoy oblasti po sputnikovym dannym MODIS (Analysis of the spectral properties of agricultural vegetation Belgorod region on MODIS satellite data), Nauchnyye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: yestestvennyye nauki, 2013, No. 10 (153), Issue 23, pp. 150-156.
  10. Bach H. Yield estimation of corn based on multitemporal LANDSAT-TM data as input for an agrometeorological model, Pure and Applied Optics: Journal of the European Optical Society Part A, 1998, Vol. 7, No. 4, pp. 809-825.
  11. Gitelson A.A., Peng Y., Masek J.G., Rundquist D.C., Verma S., Suyker A., Baker J.M., Hatfield J.L., Meyers T. Remote estimation of crop gross primary production with Landsat data, Remote Sensing of Environment, 2012, Vol. 121, pp. 404-414.
  12. Sibley A.M., Grassini P., Thomas N.E., Cassman K. G., Lobell D. Testing Remote Sensing Approaches for Assessing Yield Variability among Maize fields, Agronomy Journal, 2014, Vol. 106, No. 1, pp. 24-32.