ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 159-170

Forest tree species recognizability assessment based on satellite data on their spectral reflectance seasonal changes

V.O. Zharko1 , S.A. Bartalev1 
1 Space Research Institute RAS, Moscow, Russia
Dominant tree species is an important characteristic of Russian forests, whereas current forest inventory and monitoring methods do not allow obtaining information on this parameter regularly at the scale of the whole country. Thus the development of satellite data based forests’ species structure remote assessment methods, which enable obtaining necessary information over large areas, is of interest. Presented in the paper are the results of the experimental recognizability assessment of different dominant forest species for two test sites, selected to ensure high species diversity of coniferous and broadleaf forests. The analysis of dominant forest species recognizability was based on phenological dynamics features of their spectral reflectance, measured using MODIS spectroradiometer. Comparative tree species recognizability assessment based on weekly and seasonal surface spectral reflectance composite images has been carried out. The probability of misrecognition between different forest tree species was evaluated for the chosen test sites. The results obtained demonstrate good potential of using high temporal resolution satellite data on phenological dynamics of forests’ spectral reflectance to identify main dominant forest species.
Keywords: remote sensing, spectral reflectance, satellite data time series analysis, forest tree species recognition
Full text

References:

  1. Bartalev S.A., Ershov D.V., Isaev A.S., Loupian E.A. Osnovnye zadachi i perspektivy sozdaniya sistemy global'nogo sputnikovogo monitoringa lesov (Main tasks and perspectives of global forest satellite monitoring system creation), Lesovedenie, 2011, No. 6, pp. 3-15.
  2. Bartalev S.A., Egorov V.A., Ershov D.V., Isaev A.S., Loupian E.A., Plotnikov D.E., Uvarov I.A. Sputnikovoe kartografirovanie rastitel'nogo pokrova Rossii po dannym spektroradiometra MODIS (Russian land cover satellite mapping using MODIS spectroradiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 285-302.
  3. Bartalev S.A., Egorov V.A., Loupian E.A., Plotnikov D.E., Uvarov I.A. Raspoznavanie pakhotnykh zemel' na osnove mnogoletnikh sputnikovykh dannykh spektroradiometra MODIS i lokal'no-adaptivnoi klassifikatsii (Arable lands recognition based on multi-annual MODIS spectroradiometer satellite data and locally-adaptive classification), Komp'yuternaya optika, 2011, Vol. 35, No. 1, pp. 103-116.
  4. Bartalev S.A., Zhirin V.M., Ershov D.V. Sravnitel'nyi analiz dannykh sputnikovykh sistem Kosmos-1939, SPOT i Landsat-TM pri izuchenii boreal'nykh lesov (Comparative analysis of Kosmos-1939, SPOT and Landsat-TM satellite data for boreal forests research), Issledovanie Zemli iz kosmosa, 1995, No. 1, pp. 101-114.
  5. Burtsev M.A., Mazurov A.A., Neishtadt I.A., Proshin A.A. Postroenie arkhiva sputnikovykh dannykh dlya analiza dinamiki rastitel'nosti (Creation of satellite data archive for the analysis of vegetation dynamics), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Issue 3, Vol. 1, pp. 170-174.
  6. Gavrilyuk E.A., Ershov D.V. Tematicheskoe kartografirovanie porodnoi struktury lesov na osnove sputnikovykh izobrazhenii Landsat-TM/ETM+ (Thematic mapping of forests’ species structure using Landsat-TM/ETM+ satellite images), Pyataya Vserossiiskaya konferentsiya s mezhdunarodnym uchastiem “Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii i lesnom khozyaistve” (Proc. Conf. 5th All-Russia Conference with International Participation “Aerospace Methods and GIS Technologies in forestry and forest management”), Moscow, 22-24 April 2013, pp. 112-115.
  7. Davis S., Landgrebe D., Phillips T., Swain P., Hoffer R., Lindenlaub J., Silva L. Distantsionnoe zondirovanie: kolichestvennyi podkhod (Remote sensing: The quantitative approach), Moscow: Nedra, 1983, 415 p.
  8. Elagin I. Vremena goda v lesakh Rossii (Seasons in Russian forests), Novosibirsk: VO “Nauka”, Sibirskaya izdatel'skaya firma, 1994, 272 p.
  9. Plotnikov D.E., Bartalev S.A., Zharko V.O., Mikhailov V.V., Prosyannikova O.I. Eksperimental'naya otsenka raspoznavaemosti agrokul'tur po dannym sezonnykh sputnikovykh izmerenii spektral'noi yarkosti (An experimental assessment of crop types recognizability using time-series of intra-seasonal spectral reflectance measurements by satellite sensor), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 199-208.
  10. Plotnikov D.E., Miklashevich T.S., Bartalev S.A. Vosstanovlenie vremennykh ryadov dannykh distantsionnykh izmerenii metodom polinomial'noi approksimatsii v skol'zyashchem okne peremennogo razmera (Using local polynomial approximation within moving window for remote sensing data time-series smoothing and data gaps recovery), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 103-110.
  11. Bartalev S.A., Belward A., Ershov D.V., Isaev A.S. A New SPOT4-VEGETATION Derived Land Cover Map of Northern Eurasia, International Journal of Remote Sensing, 2003, Vol. 24, No. 9, pp. 1977-1982.
  12. Colgan M.S., Baldeck C.A., Féret J.-B., Asner, G.P. Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data, Remote Sens. 2012, Vol. 4, pp. 3462-3480.
  13. Engler R., Waser L., Zimmermann N., Schaub M., Berdos S., Ginzler C., Psomas A. Combining ensemble modeling and remote sensing for mapping individual tree species at high spatial resolution, Forest Ecology and Management, 2013, Vol. 310, pp. 64–73.
  14. Jensen J. R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2d ed., Englewood Cliffs, New Jersey: Prentice-Hall, 1996.
  15. Zhang C., Qiu F. Mapping Individual Tree Species in an Urban Forest Using Airborne Lidar Data and Hyperspectral Imagery, Photogrammetric Engineering & Remote Sensing, 2012, Vol. 78, No. 10, pp. 1079-1087.