ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 310-320

Simulation of the sea surface bidirectional reflectance distribution function

N.E. Lebedev1 , V.V. Pustovoitenko1 , K.V. Pokazeev2 , O.N. Melnikova2 
1 Marine Hydrophysical Institute, Sevastopol, Russia
2 M.V. Lomonosov Moscow State University, Moscow, Russia
Analyzed are limitations existing in traditional sea surface bidirectional reflectance distribution function (BRDF) modeling involving Gram - Charlier slopes distribution. Formally, it has the form of an infinite series, but in practice, however, only a relatively small number of series terms coefficients could be found with limited precision. As a consequence, such distributions are applicable only in a certain range of sea surface slopes beyond which they have errors, up to appearance of negative values. Range of sea surface slopes which is adequately described by Gram - Charlier distribution is narrower than is necessary for the analytic description of sea surface images obtained by spacecraft - mounted optical scanners. The combined slopes probability density model is proposed which tends either to Gram - Charlier distribution in region of small slopes values or to Gaussian distribution outside this region. On the basis of this combined slopes probability density model, free from disadvantages of Gram - Charlier distribution with a small number of terms , an improved sea surface bidirectional reflectance distribution function was built. This combined model allows to describe a mirror reflection of sunlight in the whole range of possible incident and reflected angles.
Keywords: optical images, bidirectional reflectance distribution function, sea surface slopes, Gram-Charlier distribution, combined model
Full text

References:

  1. Borodin S.V., Davydova E.P., Kalinin E.I., Pustovoitenko V.V., Stanichnyi, S.V. Kompleksnyi operativnyi sputnikovyi monitoring Chernogo morya (Complex operational satellite monitoring of the Black Sea), Sistemy kontrolya okruzhayushchei sredy, 2007, pp. 109-111.
  2. Zapevalov A.S. K raschetu koeffitsienta rasseyaniya vysokochastotnogo zvuka na morskoi poverkhnosti (On the calculation of the scattering coefficient of high frequency sound from the sea surface), Akusticheskii zhurnal, 2007, Vol. 53, No. 5, pp. 687–694.
  3. Zapevalov A.S., Lebedev N.E. Modelirovanie statisticheskikh kharakteristik poverkhnosti okeana pri distantsionnom zondirovanii v opticheskom diapazone (Simulation of the sea surface statistical characteristics at the remote sensing in the optical range), Optika atmosfery i okeana, 2014, No. 1, pp. 28-33.
  4. Zapevalov A.S., Pokazeev K.V. Statistika uklonov morskoi poverkhnosti i ee prilozhenie k zadacham lazernogo zondirovaniya (Sea surface slopes statistics and its application to problems of laser sensing), Vestnik Moskovskogo universiteta. Ser. 3. Fizika, astronomiya, 2004, No. 5, pp. 70-73.
  5. Zapevalov A.S., Pustovoitenko V.V. Modelirovanie plotnosti veroyatnostei uklonov morskoi poverkhnosti v zadachakh rasseyaniya radiovoln (Modeling of the sea surface slopes probability density in tasks of radio waves scattering), Izvestiya VUZov. Radiofizika, 2010, Vol. 53, No. 2, pp. 110-121.
  6. Zapevalov A.S. Statisticheskie modeli vzvolnovannoi morskoi poverkhnosti. Dlya zadach distantsionnogo zondirovaniya (Statistical models of the rough sea surface. For remote sensing tasks), Saarbrücken: LAP LAMBERT Academic Publishing, 2012. 69 p.
  7. Korotaev G.K., Pustovoitenko V.V., Radaikina L.N. Distantsionnoe zondirovanie morei i okeanov. Razvitie rabot v oblasti sputnikovoi okeanologii (Remote sensing of the oceans and seas. Development of work in the field of satellite Oceanology), Razvitie morskikh nauk tekhnologii v Morskom gidrofizicheskom institute za 75 let. Sevastopol: MGI, 2004, pp. 585-625.
  8. Landau L.D., Lifshits E.M. Elektrodinamika sploshnykh sred (Electrodynamics of continuous media), Moscow: Nauka, 1982. 620 p.
  9. Lebedev N.E. Opredelenie skorosti privodnogo vetra i stepeni zagryaznennosti morskoi poverkhnosti po izlucheniyu, registriruemomu sputnikovymi opticheskimi skanerami v zone solnechnogo blika (Determination of wind speed and degree of contamination of the sea surface by radiation measured by satellite optical scanners in the area of sun glint), Ekologicheskaya bezopasnost' pribrezhnoi i shel'fovoi zon i kompleksnoe ispol'zovanie resursov shel'fa. Sevastopol: MGI NANU, 2013, Issue 27, pp. 49-54.
  10. Mel'nikova O.N., Nivina T.A., Pokazeev K.V. Vliyanie vikhrei v otryvnom potoke na rost nelineinykh vetrovykh voln (On the amplification of wind nonlinear waves due to the vortexformation in separated flow), Vestnik Moskovskogo universiteta. Ser. 3. Fizika, astronomiya. 2008, Vol. 63, No. 3, pp. 77-78.
  11. Mityagina M.I., Lavrova O.Yu. Mnogoletnii kompleksnyi sputnikovyi monitoring neftyanykh zagryaznenii poverkhnosti Baltiiskogo i Kaspiiskogo morei (Long-term complex satellite monitoring of the surface oil pollution of the Baltic and Caspian seas), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 269-288.
  12. Bréon F.M., Henriot N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions, J. Geoph. Res., 2006, Vol. 111, No. C6, pp. C06005.
  13. Cavalli R.M.; Pignatti S.; Zappitelli E. Correction of Sun Glint Effect on MIVIS Data of the Sicily Campaign in July 2000, Annals Of Geophysics, 2006, Vol. 49, No. 1, pp. 277-286.
  14. Cox C., Munk W. Measurements of the roughness of the sea surface from photographs of the sun glitter, J. Optical. Soc. America, 1954, Vol. 44, No. 11, pp. 838-850.
  15. Nakajima T., Tanaka M. Effect of wind-generated waves on the transfer of solar radiation in the atmosphere – ocean system, J. Quant. Spect. Rad. Trans., 1983, Vol. 29, pp. 521-537.
  16. Su, W., Charlock T.P., Rutledge K. Observations of reflectance distribution around sunglint from a coastal ocean platform, Appl. Opt., 2002, Vol. 41, pp.7369-7383.
  17. Tatarskii V.I. Multi-Gaussian representation of the Cox–Munk distribution for slopes of wind-driven waves, J. Atmospheric and Oceanic Technology, 2003, Vol. 20, pp. 1697-1705.
  18. Torrance K.E., Sparrow E.M. Theory for off-specular reflection from roughened surfaces, J. Optical Society of America, 1967, Vol. 57, No. 9, pp. 1105-1114.
  19. Xiong X., Barnes W. An overview of MODIS radiometric calibration and characterization, Advances In Atmospheric Sciences, 2006, Vol. 23, No. 1, pp. 69-79.