Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 103-110
Using local polynomial approximation within moving window for remote sensing data time-series smoothing and data gaps recovery
D.E. Plotnikov
1 , T.S. Miklashevich
1 , S.A. Bartalev
1
1 Space Research Institute RAS, Moscow, Russia
Remote sensing data provide operative and unbiased information about vegetation state and dynamics. Remote sensing data time series analysis facilitates vegetation types discrimination. However, haze, clouds and their shadows distort spectral reflectance values in Visible, Red and NIR bands. Presently, these hindering factors are well dealt with during data pre-processing and multi-temporal image composing, resulting in data gaps appearing within time series, but residual impurities and instrument noises still disarrange data in time series. Current approaches for time series smoothing deal mostly with data disturbances due to noises and hindering factors, while time series are considered gapless. Besides, these methods do not imply detection and following exclusion of certainly disturbed data. However, data gaps and distortions must be considered jointly to avoid drawbacks of data recovery process through distorted data. This paper describes the use of local polynomial approximation within moving window of variable size jointly for time-series smoothing and data gaps filling.
Keywords: remote sensing, time series, gaps filling, data smoothing
Full textReferences:
- Balashov I.V., Burtsev M.A., Efremov V.Yu., Loupian E.A., Proshin A.A., Tolpin V.A. Postroenie arkhivov rezul'tatov obrabotki sputnikovykh dannykh dlya sistem dinamicheskogo formirovaniya proizvodnykh informatsionnykh produktov (Archives of remote sensing data processing results for use in dynamic systems for derivative products creation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Issue 5, Vol. 1, pp. 26-32.
- Bartalev S.A., Egorov V.A., Loupian E.A., Plotnikov D.E., Uvarov I.A. Raspoznavanie pakhotnykh zemel' na osnove mnogoletnikh sputnikovykh dannykh spektroradiometra MODIS i lokal'no-adaptivnoi klassifikatsii (Recognition of arable lands using multi-annual satellite data from spectroradiometer MODIS and locally adaptive supervised classification), Komp'yuternaya optika, 2011, Vol. 35, No. 1, pp. 103-116.
- Loupian E.A., Savin I.Yu., Bartalev S.A., Tolpin V.A., Balashov I.V., Plotnikov D.E. Sputnikovyi servis monitoringa sostoyaniya rastitel'nosti ("Vega") (Satellite service for vegetation monitoring VEGA), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp.190-198.
- Plotnikov D.E., Bartalev S.A., Zharko V.O., Mikhailov V.V., Prosyannikova O.I. Eksperimental'naya otsenka raspoznavaemosti agrokul'tur po dannym sezonnykh sputnikovykh izmerenii spektral'noi yarkosti (An experimental assessment of crop types recognisability using time-series of intra-seasonal spectral reflectance measurements by satellite sensor), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No 1, pp. 199-208.
- Plotnikov D.E., Bartalev S.A., Loupian E.A. Priznaki raspoznavaniya pakhotnykh zemel' na osnove mnogoletnikh ryadov dannykh sputnikovogo spektroradiometra MODIS (The recognition features to map arable lands based on multi-annual MODIS Earth observation data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 1, pp. 330-341.
- Stytsenko F.V., Bartalev S.A., Egorov V.A., Loupian E.A. Metod otsenki stepeni povrezhdeniya lesov pozharami na osnove sputnikovykh dannykh MODIS (Post-fire forest tree mortality assessment method using MODIS satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 254-266.
- Nelder J.A., Mead R. A simplex method for function minimization, Computer Journal, 1965, Vol. 7, pp. 308—313.
- Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry, 1964, Vol. 36 (8), pp. 1627–1639.