Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 187-196
Vegetation cover changes mapping within Kiev metropolis agglomeration using long-term time series of Landsat multispectral satellite imagery
S.A. Stankevich
1 , I.O. Piestova
1
1 Scientific Centre for Aerospace Research of the Earth (CASRE), Institute of Geological Science, National Academy of Sciences of Ukraine, Kiev, Ukraine
The results of vegetation cover changes mapping within Kiev metropolis agglomeration using remote sensing data are presented. Kiev metropolis agglomeration imagery, obtained by Landsat satellite system from 1992 to 2011, was analyzed. More than 40 multispectral images, satisfying the research requirements, were selected for detailed analysis. All are within the growing season for many plants inside Kiev metropolis agglomeration. After the radiometric calibration the thresholds of normalized-difference vegetation index (NDVI) were obtained and vegetation mask was built using them. Leaf area index LAI is selected as the main quantitative indicator of vegetation cover. The following basic classes for Kiev metropolitan habitats were detected and mapped: coniferous and deciduous forests, arable lands, meadows and pastures, lands with sparse vegetation. For each of the classes, the NDVI-LAI regression dependence was applied and LAI spatial distribution of study area was built. The parameters of LAI long-term time series analysis – trends and periodic components - show a systematic reduction in the vegetation amount within Kiev metropolitan area.
Keywords: multispectral satellite imagery, long-term time series analysis, vegetation state, urban areas, vegetation indices
Full textReferences:
- Korets M.A., Ryzhkova V.A., Bartalev C.A., Otsenka sostoyaniya rastitel'nogo pokrova v zone vozdeistviya promyshlennykh predpriyatii s ispol'zovaniem dannykh ENVISAT-MERIS i SPOT-Vegetation (Evaluation of vegetation in the area affected by industries using data from ENVISAT-MERIS and SPOT-Vegetation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol.2, No. 3, pp. 330-334.
- Kochubei S.M., Kobets N.I., Shadchina T.M. Spektral'nye svoistva rastenii kak osnova metodov distantsionnoi diagnostiki (Spectral properties of plants as the basis of remote diagnostics methods), Kiev: Naukova dumka, 1990, 136 p.
- Stankevich S.A., Kozlova A.A., Grisbakh R., Opredelenie kharakteristik fenologicheskogo razvitiya rastitel'nykh soobshchestv po snimkam RapidEye (Characterization of phenological development of plant communities by RapidEye imagery), Abstracts of 13th Ukrainian Conference on Space Research, Eupatoria: Space Research Institute, 2013, 191 p.
- Stankevich S.A., Pestova I.A. Dolgovremennye ryady sputnikovykh izobrazhenii kak instrument analiza kolichestvennykh izmenenii rastitel'nogo pokrova (Long time series of satellite imagery as a tool for quantitative analysis of vegetation changes), Abstracts of 13th Ukrainian Conference on Space Research, Eupatoria: Space Research Institute, 2013, 170 p.
- Suslov V.I., Ibragimov N.M., Talysheva L.P., Tsyplakov A.A., Ekonometriya (Econometrics), Novosibirsk: Izd. SO RAN, 2005, 744 p.
- Ljal'ko V.I., Popov M.O., Bagatospektral’ni metody DZZ v zadachah pryrodokorystuvannja (Multispectral remote sensing in nature management), Kiev: Naukova dumka, 2006, 360 p.
- Diduh Ja.P., Al'oshkina U.M., Biotopy mista Kyjeva (Biotopes of Kiev city), Kyi'v: NaUKMA, 2012, 163 p.
- Minbud Ukrai'ny, 10.04.2006, No. 105.
- Popov M.O., Stankevych S.A., Kozlova A.O., Markova I.O., Do operatyvnogo ocinjuvannja zabezpechenosti mis'kyh terytorij zelenymy nasadzhennjamy iz zastosuvannjam bagatospektral'nyh aerokosmichnyh znimkiv (In addition for evaluating the operational providing greenery of urban areas using multispectral aerospace images), Naukovyj visnyk Nacional'nogo agrarnogo universytetu, Vol. 128, Kiev: NAUU, 2008, pp. 299-301.
- Bunks C., Delebecque F., Le Vey G., Steer S. Signal Processing with SciLab, Rocquencourt: INRIA, 2007, 205 p.
- Irish R. Landsat-7 automatic cloud cover assessment, Proceedings of SPIE, 2000, Vol. 4049, pp. 348-355.
- Jensen R., Gatrell J., Boulton J., Harper B. Using remote sensing and geographic information systems to study urban quality of life and urban forest amenities, Ecology and Society, 2004, Vol. 9, No.5, A.5.
- Miller R.W. Urban Forestry: Planning and Managing Urban Greenspaces, Englewood Cliffs: Prentice Hall, 1988, 404 p.
- Myneni R.B., Nemani R.R., Running S.W. Estimation of global leaf area index and absorbed PAR using radiative transfer model, IEEE Trans. Geosci. Remote Sens., 1997, Vol. 35, No. 6, pp.1380-1393.
- Newman A.P. Monitoring urban forest canopy cover using satellite imagery, Environmental Monitoring and Assessment, 1993, Vol. 26, No. 2-3, pp. 175-176.
- Pillmann W., Kellner K. Monitoring of green urban spaces and sealed surface areas, Proceedings of the 2nd International Symposium “Remote Sensing of Urban Areas”, Regensburg: University of Regensburg, 2001, CD.
- Tang S., Zhu Q., Zhou Y., Xie D., Yang S., Bu Q.A. Large Scale LAI Inversion Algorithm, Proceedings of Geoscience and Remote Sensing Symposium IGARSS’04, Anchorage: IEEE International, 2004, Vol. 7, pp. 4498-4500.
- Ulrych T.J., Bishop T.N. Maximum entropy spectral analysis and autoregressive decomposition // Reviews of geophysics and space physics, 1975, Vol. 13, No. 1, pp. 183-200.
- Urroz G.E. Time Series and Spatial Data Analysis with SciLab, Logan: InfoClearinghouse, 2001, 64 p.