ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 219-227

Analysis of tropical cyclones influence on chlorophyll–a concentration fields in North-Western Pacific during 1979-1986 and 1996-2010 using satellite passive remote ocean color data

P.A. Salyuk1 , I.E. Stepochkin2 , A.I. Aleksanin3 , I.A. Golik1 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Adm. G.I. Nevelski Maritime State University, Vladivostok, Russia
3 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
The satellite ocean color data of CZCS, OCTS, SeaWiFS, MODIS-Aqua and data of the Japan Meteorological Agency on tropical cyclones (TC) trajectories, wind speeds and area of TC influence were used in the study. In total, the data allowed to analyze the influence of 123 TCs on chlorophyll-a concentration in 1389 areas during 1979-1986 and 1996-2010, and influence of 135 TCs on sea surface temperature (SST) in 1412 areas during 2002-2010. It was shown that chlorophyll-a concentration increased in 81% cases, SST decreased in 76% cases. The most probable change of chlorophyll-a concentration was +18%; that of SST -3%. The growth of phytoplankton cells was observed on the 2nd-4th days after TC passage and continued for about 2 weeks. Peculiarities of satellite data use in chlorophyll-a concentration change analysis are discussed.
Keywords: chlorophyll-a, phytoplankton, tropical cyclones, typhoon, hurricane, ocean color, satellite, Pacific ocean, remote sensing
Full text


  1. Grigorkina R.G., Fuks V.R. Vozdeistvie taifunov na okean (Influence of typhoons to ocean), Leningrad: “Gidrometeoizdat”, 1986, 243 p.
  2. Permyakov M.S., Akmaikin D.A., Salyuk P.A., Bukin O.A., Tarhova T.I., Smolin P.V. Vliyanie taifunov na polya koncentracii hlorofilla – “a” po dannyim skanera tsveta morskoi vodyi SeaWiFS (Typhoon influence on chlorophyll – “a” concentration fields based on remote sensing data of SeaWiFS), Issledovanie Zemli is Kosmosa, 2005, No. 6, pp. 56-62.
  3. Babin S.M., Carton J.A., Dickey T.D., Wiggert J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert, J. Geophys. Res. 2004, Vol. 109, p. C03043. doi:10.1029/2003JC001938.
  4. Bates N. R. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res., 2007, Vol. 112, p. C09013, doi:10.1029/2006JC003759.
  5. Behrenfeld M.J., Falkowski P.G. A consumer's guide to phytoplankton primary productivity models, Limnology and Oceanography, 1997, Vol. 42, pp. 1479-1491.
  6. Chen Ch.-T.A., Liu Ch.-T., W.S. Chuang, Y.J. Yang, Fuh-KwoShiah, T.Y. Tang, S.W. Chung. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea, Journal of Marine Systems, 2003, Vol. 42, No. 1-2, pp. 65– 79.
  7. Chen Y., Tang D. Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea, International Journal of Remote Sensing, 2012, Vol. 33, No. 23. pp. 7444-7457.
  8. Emanual K.A. Increasing destructiveness of tropical cyclone over the past 30 years, Nature, 2005, Vol. 436, pp. 686-688.
  9. Feldman G. C., McClain C. R. Ocean Color Web, Reprocessing 2011, NASA Goddard Space Flight Center. Eds. Kuring, N., Bailey, S. W., 2011.
  10. Fuh-KwoShiah, Shi-Wei Chung, Shuh-Ji Kao, Gwo-Ching Gong, Kon-Kee Liu. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait, Continental Shelf Research, 2000, Vol. 20, No. 15, pp. 2029-2044.
  11. Hanshaw M.N., Lozier M.S., Palter J.B. Integrated impact of tropical cyclones on sea surface chlorophyll in the North Atlantic, Geophysical Research Letters, 2008,Vol. 35, No. 1, p. L01601, doi:10.1029/2007GL031862.
  12. Huang P. and Imberger J. Variation of pCO2 in ocean surface water in response to the passage of a hurricane, J. Geophys. Res., 2010, Vol. 115, Issue C10, doi:10.1029/2010JC006185.
  13. Levy M., Lengaigne M., Bopp L., Vincent E.M., Madec G., Ethe C., Kumar D., Sarma V.V.S.S. Contribution of tropical cyclones to the air-sea CO2 flux: a global view, Global Biogeochem. Cycles, 2012, Vol. 26, No. 2, doi:10.1029/2011GB004145.
  14. Lin I., Liu W.T., Wu C.C. New evidence for enhanced ocean primary production triggered by tropical cyclone, Geophys. Res. Let., 2003, Vol. 30, No. 13, pp. 1718. doi:10.1029/2003GL017141.
  15. McClain C.R., Feldman G.C. and S.B. Hooker. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep Sea Res. II, 2004, Vol. 51, pp. 5-42.
  16. Price J.F. Upper Ocean Response to Hurricane, Journal of Physical Oceanography, 1981, Vol. 11, No. 2 , pp. 153-175.
  17. Shiah F.K., Chung S.Y., Kao S.J., Gong G.C., Liu K.K. Biological and hydrographical responses to tropical cyclones(Typhoons) in the continental shelf of the Taiwan Strait, Cont. Shelf Res., 2000, Vol. 20, pp. 2029-2044.
  18. Stramma L., Cornillon P. Satellite observations of the sea surface cooling by hurricane, J. Geophys. Res., 1986, Vol. 91, No. C4, pp. 5031-5035.
  19. Webster P.J., Holland G.J., Curry J.A., Chang H.R. Changes in tropical cyclone number, duration, and intensity in a warming environment, Science, 2005, Vol. 309, No. 5742, pp. 1844-1846.
  20. Yamaguchi M. and T. Komori. Outline of the Typhoon Ensemble Prediction System at the Japan Meteorological Agency, RSMC Tokyo-Typhoon Center Technical Review, 2009, No. 11, pp.14-24.