Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 135-147
Detection and recognition of various water types in Black Sea coastal zone and in lakes of Crimea based on hyperspectral data analysis
O.Yu. Lavrova
1 , M.I. Mityagina
1 , I.A. Uvarov
1
1 Space Research Institute, Moscow, Russia
Characteristics of hyperspectral instruments are compared to those of multispectral sensors and discussed from the point of view of their use for studying the processes and phenomena in the oceans and seas. It is shown that satellite hyperspectral data become an effective tool for world ocean research. Assessment of informative value of different spectral bands and their combinations for determination of hydrooptical properties of moderately turbid and productive waters of coastal zones of seas and inland water bodies was performed. The feasibility assessment of hyperspectral data for recognition of intensive algal blooms areas was made. The hyperspectral data were proved also to have high level of information content in view of detection and discrimination of different types of anthropogenic and biogenic pollution in coastal zones. Processing and joint analysis of various satellite data were performed on the basis of the “See the Sea” geoportal developed in IKI RAS. Examples of efficient use of satellite hyperspectral data for recognition of anthropogenic pollution in different areas of the Sivash Sea and for retrieval of a detailed picture of suspended matter distribution in the shelf break area of the northeastern Black Sea are presented and discussed.
Keywords: satellite remote sensing, hyperspectral sensors, optical sensors, coastal zones, anthropogenic pollution,biogenic pollution, geoportal
Full textReferences:
- Bondur V.G., Kozlenko N.N., Rybakova N.I. Vozmozhnosti ispol'zovaniya giperspektral'nykh i mnogospektral'nykh sputnikovykh dannykh dlya monitoringa zagryaznenii pribrezhnykh akvatorii okeana (Possibilities of usage of satellite hyperspectral and multispectral data for pollution monitoring in ocean coastal zones), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 3, No. 2, pp. 30–36.
- Loupian E.A., Matveev A.M., Uvarov I.A., Bocharova T.Yu., Lavrova O.Yu., Mityagina M.I. Sputnikovyj servis See the Sea - instrument dlja izuchenija processov i javlenij na poverhnosti okeana (The Satellite service See the Sea – a tool for the study of oceanic phenomena and processes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 251–262.
- Uvarov I.A., Loupian E.A., Matveev A.M., Mazurov A.A., Lavrova O.Yu., Mityagina M.I. Organizacija raboty s dannymi sputnikovyh giperspektral'nyh nabljudenij dlja issledovanija processov v Mirovom okeane (Management of hyperspectral remote sensing data for studies of world ocean processes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 200–212.
- Tronin A.A., Gornyi V.I., Kritsuk S.G., Latypov I.Sh. Spektral'nye metody distantsionnogo zondirovaniya v geologii. Obzor (Spectral remote sensing for mineral exploration. A review), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 26–36.
- Brando V. E, Dekker A. G., Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality, IEEE Transactions on Geoscience and Remote Sensing, 2003, Vol. 41, No. 6, pp. 1378–1387.
- Brando, V. E., J. M. Anstee, M. Wettle, A. G. Dekker, S. R. Phinn, and C. Roelfsema, A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data, Remote Sensing of Environment, 2009, Vol. 113, pp. 755–770.
- Dall’Olmo G., and Gitelson A., Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results, Applied optics, 2006, Vol. 45, pp. 3577–3592.
- Hsuan Ren, Chein-I Chang, Automatic spectral target recognition in hyperspectral imagery, IEEE Transactions on Aerospace and Electronic Systems, 2003, Vol. 39, Issue 4, pp. 1232–1249.
- Klonowski, W.M., P.R. C.S. Fearns, and M.J. Lynch, Retrieving key benthic cover types and bathymetry from hyperspectral imagery, Journal of Applied Remote Sensing, 2007, Vol. 1, doi: 10.1117/1.2816113.
- Kopelevich O.V., Burenkov V.I., Ershova S.V., Sheberstov S.V., Evdoshenko M.A., Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian Seas , Deep-Sea Research II, 2004, Vol. 51, No. 10-11, pp. 1063–1091.
- Kopelevich, O.V., Burenkov, V.I., Ershova, S.V. Sheberstov S.V., Evdoshenko M.A. Assessment of optical characteristics of atmosphere and ocean by data from satellite ocean color sensors, Eighth International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Proceedings SPIE 4678, 2002, pp. 332–343.
- Kozoderov V.V., Dmitriev E.V., Remote sensing of soils and vegetation: regional aspects, International Journal of Remote Sensing, 2008, Vol. 29, No. 9, pp. 2733–2748.
- Lavrova O.Yu., Loupian E.A., Mityagina M.I., Uvarov I.A., Bocharova T. Yu. See the Sea — Multi-User Information System Ocean Processes Investigations Based on Satellite Remote Sensing Data // Bollettino di Geofisica teorica ed applicata. An International Journal of Earth Sciences, 2013, Vol.54, pp.146–147.
- Li R.-R., Kaufman Y. J, Gao B.–C., Davis C.O. Remote sensing of suspended sediments and shallow coastal waters, IEEE Transactions on Geoscience and Remote Sensing, 2003, Vol. 41, No. 3, pp. 559–566.
- Lee, Z. P., K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, Hyperspectral remote sensing for shallow waters: 2. Deriving depths and optical properties by optimization, Applied Optics, 1999, Vol. 38, pp. 3831–3843.
- Lee, ZhongPing, B. Casey. R. A. Arone, A. D. Weidemann, M. J. Montes, B-C Gao, W. Goode, C.O. Davis, and J. Dye, Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform, Journal of Applied Remote Sensing, 2007, Vol. 1, SPIE doi: 10.1117/12.791119.
- Louchard E M, Reid R P, Stephens C F., Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments, Optics Express, 2002, Vol. 10, No. 26, pp.1573–1584.
- Schalles J.F., Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations, Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications (ed. L Richardson and E Ledrew), Springer: Berlin, 2006, pp. 27–79.
- VahtmÄae E., Kutser T., Martin G., Kotta J., Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters - a Baltic Sea case study, Remote Sensing of Environment, 2006, Vol. 101, No. 3, pp. 342–351.
- Yacobi Y. Z., Moses W. J., Kaganovsky S., Sulimani B., Leavitt B.C. and Gitelson A.A., NIR-red reflectancebased algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study, Water Resources, 2011, Vol. 45, pp. 2428–2436.