ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 267-284

Using satellite hyperspectral data to study the activity of Kamchatka volcanoes on the basis of the VolSatView geoportal

E.I. Gordeev1 , O.A. Girina1 , E.A. Loupian2 , V.Yu. Efremov2  , A.А. Sorokin3 , D.V. Melnikov1 , A.G. Manevich1 , I.M. Romanova1 , S.P. Korolev3 , L.S. Kramareva4 
1 Institute of Volcanology and Seismology, Far Eastern Branch RAS, Petropavlovsk-Kamchatsky, Россия
2 Space Research Institute RAS, Moscow, Russia
3 Computing Center, Far Eastern Branch RAS, Khabarovsk, Russia
4 Far Eastern Center of "Planeta" Research Center for Space Hydrometeorology, Khabarovsk, Russia
Annual Kamchatkan strong explosive eruptions with ash emissions of 8–15 km above the sea level represent a real threat to modern jet aviation. To reduce the risk of aircraft encounters with volcanic ash clouds in the North Pacific region, the KVERT team of the Institute of Volcanology and Seismology of Far Eastern Branch RAS (IVS FEB RAS) conducts daily satellite monitoring of Kamchatkan volcanoes. In 2011, experts of IVS FEB RAS, Space Research Institute RAS, Computing Center of Far Eastern Branch RAS and Far Eastern Center of “Planeta" Research Center for Space Hydrometeorology created and put into trial operation an information service "Monitoring of volcanic activity of Kamchatka and the Kurile Islands" (VolSatView). This service allows working with different satellite data, including hyperspectral data, as well as meteorological and ground information. VolSatView will be able to provide volcanologists with the possibility of continuous monitoring and study of volcanic activity in Kamchatka and the Kurile Islands. The paper presents examples of hyperspectral satellite data use in the VolSatView environment to analyze different volcanic processes.
Keywords: volcanoes of Kamchatka and Kuriles, activity of volcanoes, volcanogenic products, hyperspectral satellitedata, remote sensing systems, information system
Full text

References:

  1. Andreev M.V., Efremov V.Yu., Lupyan E.A., Mazurov A.A., Naglin Yu.F., Proshin A.A., Flitman E.V., Postroenie interfeisov dlya organizatsii raboty s arhivami sputnikovyh dannyh udalennyh polzovatelei (Development of interfaces for remote user work with satellite data archives), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2000, No. 1, pp. 514–520.
  2. Balashov I.V., Halikova O.A., Burtsev M.A., Lupyan E.A., Matveev A.M., Organizatsiya avtomaticheskogo polucheniya naborov informatsionnyh produktov iz tsentrov arhivatsii i rasprostraneniya sputnikovyh i meteodannyh (Organization of automatic data acquisition from satellite and meteorological data archiving and distribtuion centers), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 9–20.
  3. Girina O.A., O predvestnike izverzhenii vulkanov Kamchatki, osnovannom na dannyh sputnikovogo monitoringa (On precursor of Kamchatkan volcanoes eruptions based on data from satellite monitoring), Vulkanologiya i seismologiya, 2012, No. 3, pp. 14–22.
  4. Girina O.A., Gordeev E.I., Proekt KVERT – snizhenie vulkanicheskoi opasnosti dlya aviatsii pri eksplosivnyh izverzheniyah vulkanov Kamchatki i Severnyh Kuril (KVERT project: reduction of volcanic hazards for aviation from explosive eruptions of Kamchatka and Northern Kuriles volcanoes), Vestnik DVO RAN, 2007, Vol. 132, No. 2, pp. 100–109.
  5. Girina O.A., Ushakov S.V., Malik N.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Kotenko L.V., Deistvuyustchie vulkany Kamchatki i o. Paramushir Severnyh Kuril v 2007 g. (The Active Volcanoes of Kamchatka and Paramushir Island, North Kurils in 2007), Vulkanologiya i seismologiya, 2009, No. 1, pp. 3–20.
  6. Goryunova V.N., available at: http://zenit-foto.ru/images/phocagallery/kmz/akademiya_ kontenant/konferencii/gsa/sekciya_4_5_part1/Goryunova.pdf.
  7. Egorov V.A., Iliin V.O., Lupyan E.A., Mazurov A.A., Flitman E.V., Vozmozhnosti postroeniya avtomatizirovannyh system obrabotki sputnikovyh dannyh na osnove programmnogo kompleksa XV_SAT (Construction feasibility of computer-aided systems for satellite data processing based on XV_SAT software complex), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Issue 1, pp. 431–436.
  8. Eremeev V.A., Mordvintsev I.N., Platonov N.G. Sovremennye giperspektralnye sensory i metody obrabotki giperspektralnyh dannyh (Modern hyperspectral sensors and method of processing hyperspectral data), Issledovaniye Zemli iz kosmosa, 2003, No. 6, pp. 80–90.
  9. Efremov V.Yu., Girina O.A., Kramareva L.S., Lupyan E.A., Manevich A.G., Matveev A.M., Melnikov D.V., Proshin A.A., Sorokin A.A., Flitman E.V., Sozdanie informatsionnogo servisa "Distantsionnyi monitoring aktivnosti vulkanov Kamchatki i Kuril" (Creating an information service “Remote monitoring of active volcanoes of Kamchatka and the Kuril Islands”), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 155–170.
  10. Efremov V.Yu., Lupyan E.A., Mazurov A.A., Proshin A.A., Flitman E.V., Tehnologiya postroeniya avtomatizirovannyh system hraneniya sputnikovyh dannyh (Technology of construction of computer-aided systems for satellite data storage), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Issue 1, pp. 437–443.
  11. Kondranin T.V., Kozoderov V.V., Dmitriev E.V., Egorov V.D., Borzyak V.V., Nikolenko A.A., Avtomatizatsiya obrabotki dannyh samoletnogo giperspektralnogo zondirovaniya (Automated airborne hyperspectral remote sensing data processing), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 312–319.
  12. Lupyan E.A., Mazurov A.A., Nazirov R.R., Proshin A.A., Flitman E.V., Tehnologiya postroeniya avtomatizirovannyh informatsionnyh system sbora, obrabotki, hraneniya i rasprostraneniya sputnikovyh dannyh dlya resheniya nauchnyh i prikladnyh zadach (Development technology for automated systems of collection, processing, storage and distribution of satellite data for scientific and application purposes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Issue 1, pp. 81–88.
  13. Lupyan E.A., Mazurov A.A., Nazirov R.R., Proshin A.A., Flitman E.V., Krasheninnikova Yu.C., Tehnologiya postroeniya informatsionnyh system distantsionnogo monitoringa (Technologies for building remote monitoring information systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 26–43.
  14. Morozov S.A., available at http://zenit-foto.ru/images/phocagallery/kmz/akademiya_ kontenant/konferencii/gsa/ sekciya_1_part2/Morozov_1.pdf.
  15. Romanova I.M., Geoportal IVS DVO RAN kak edinaya tochka dostupa k vulkanologicheskim i seismologicheskim dannym (IVS FEB RAS Geoportal as a single point of access to volcanological and seismological data), Geoinformatika, 2013, No. 1, pp. 46–54.
  16. Romanova I.M., Girina O.A., Maksimov A.P., Melekestsev I.V., Sozdanie kompleksnoy informatsionnoy web-sistemy “Vulkany Kurilo-Kamchatskoy ostrovnoy dugi (VOKKIA)” (Creation of complex information web system “Volcanoes of the Kurile-Kamchatka Island Arc” (VOKKIA)), Informatika i sistemy upravleniya, 2012, Vol. 33, No. 3, pp. 179–187. http://ics.khstu.ru/media/2012/N33_19.pdf.
  17. Tolpin V.A., Balashov I.V., Efremov V.Yu., Lupyan E.A., Proshin A.A., Uvarov I.A., Flitman E.V., Sozdanie interfeisov dlya raboty s dannymi sovremennyh system distantsionnogo monitoringa (sistema GEOSMIS) (The GEOSMIS system: Developing interfaces to operate data in modern remote monitoring systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 93–108.
  18. Uvarov I.A., Halikova O.A., Balashov I.V., Burtsev M.A., Lupyan E.A., Matveev A.M., Platonov A.E., Proshin A.A., Tolpin V.A., Krasheninnikova Yu.C., Organizatsiya raboty s meteorologicheskoy informatsiei v informatsionnyh systemah distantsionnogo monitoringa (Meteorological data management in framework of the satellite monitoring information systems), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 30–45.
  19. Uvarov I.A., Matveev A.M., Burtsev M.A., Lupyan E.A., Mazurov A.A., Proshin A.A., Savorskii V.P., Sudneva O.A., Organisatsiya raspredelennoy raboty s dannymi sputnikovyh giperspektralnyh nablyudenii dlya resheniya nauchnyh i prikladnyh zadach (Distributed data management of hyperspectral remote sensing data for scientific purposes and applications), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 322–333.
  20. Hanchuk A.I., Sorokin A.A., Smagin S.I., Korolev S.P., Makogonov S.V., Tarasov A.G., Shestakov N.V., Rasvitie informatsionno-telekommunikatsionnyh system v DVO RAN (Development of information and telecommunication systems in the Far Eastern Branch of RAS), Informatsionnye tehnologii i vychislitelnye sistemy, 2013, No. 4, pp. 45–57.
  21. Abrams M., Hook S., NASA's Hyperspectral Infrared Imager (HyspIRI), in Kunzer and Dech (eds.), Thermal Infrared Remote Sensing: sensors, methods and applications, Remote Sensing and Digital Image Processing, Springer, 2013, DOI: 10.1007/978-94-007-6639-6_6.
  22. Abrams M., Pieri D., Realmuto V., Wright R., Using EO-1 Hyperion data as HyspIRI preparatory data sets for volcanology applied to Mt. Etna, Italy, J. Selected Topics in Applied Earth Observations and Remote Sensing, 2013, No. 6, pp. 375–385.
  23. Carter A.J., Girina O.A., Ramsey M.S., Demyanchuk Y.V., ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia, Remote Sensing of Environment, 2008, Vol. 112, pp. 2569–2577.
  24. Chang G., Mahoney K., Briggs-Whitmire A., Kohler D., Lewis M., Mobley C., Moline M., Boss E., Kim M., Philpot W., Dickey T., The new age of hyperspectral oceanography, Oceanography, 2004, Vol. 17 (2), pp. 16–23.
  25. Clark R.N., Swayze G.A., Wise R., Livo K.E., Hoefen T.M., Kokaly R.F., Sutley S.J., USGS Digital Spectral Library splib06a, U.S. Geological Survey, 2007, Data Series 231, http://speclab.cr.usgs.gov/spectral.lib06/ds231/datatable.html.
  26. Flynn L.P., Harris A.J., Rothery D.A., Oppenheimer C., High-spatial-resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data, Geophysical Monograph Series, 2000, Vol. 116, pp. 161–177.
  27. Flynn L.P., Harris A.J., Wright R., Improved identification of volcanic features using Landsat 7 ETM+ , Remote Sensing of Environment, 2001, Vol. 78 (1), pp. 180–193.
  28. Flynn L.P., Mouginis-Mark P.J., Horton K.A., Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991, Bulletin of Volcanology, 1994, Vol. 56 (4), pp. 284–296.
  29. Glaze L., Francis P.W., Rothery D.A., Measuring thermal budgets of active volcanoes by Satellite remote sensing, Nature, 1989, Vol. 338, pp. 144–146.
  30. Griffin M.K., Hsu S.M., Burke H.K., Orloff S.M., Upham C.A., Examples of EO-1 Hyperion Data Analysis, Lincoln laboratory journal, 2005, Vol. 15, No. 2, pp. 271–298.
  31. Griffin M.K., Hsu S.M., Burke H.K., Snow J.W., Characterization and Delineation of Plumes, Clouds and Fires in Hyperspectral Images, SPIE 4049, 2000, pp. 24–28.
  32. Harris A.J., Flynn L.P., Keszthelyi L., Mouginis-Mark P.J., Rowland S.K., Resing J.A., Calculation of lava effusion rates from Landsat TM data, Bulletin of Volcanology, 1998, Vol. 60 (1), pp. 52–71.
  33. Kearney C.S., Dean K., Realmuto V.J., I.M. Watson, J. Dehn, F. Prata, Observations of SO2 production and transport from Bezymianny volcano, Kamchatka using the MODerate resolution Infrared Spectroradiometer (MODIS), Int. J. Remote Sensing, 2008, Vol. 29, No. 22, pp. 6647–6665.
  34. Koeppen W.C., Patrick M., Orr T., Sutton J., Dow D., Wright R., Constraints on the partitioning of Kilauea's lavas between surface and tubed flows, estimated from infrared satellite data, sulfur dioxide flux measurements, and field observations, Bulletin of Volcanology, 2013, Vol. 75, doi:10.1007/s00445-013-0716-3.
  35. Lombardo V., Buongiorno M.F., Pieri D., Merucci, L., Differences in Landsat TM derived lava flow thermal structures during summit and flank eruption at Mount Etna, Journal of Volcanology and Geothermal research, 2004, Vol. 134 (1), pp. 15–34.
  36. Miller T.P., Casadevall T.J., Volcanic ash hazards to aviation, Encyclopedia of Volcanoes, Academic Press, San Diego, California, 2000, pp. 915–930.
  37. Neal Ch., Girina O., Senyukov S., Rybin A., Osiensky J., Izbekov P., Ferguson G., Russian eruption warning systems for aviation, Natural Hazards, Springer Netherlands, 2009, Vol. 51, No. 2, pp. 245–262.
  38. Oppenheimer C., Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989), Journal of Geophysical Research: Solid Earth (1978–2012), 1991, Vol. 96 (B13), pp. 21865–21878.
  39. Prata A.J., Observation of volcanic ash clouds using AVHRR-2 radiances, Int. J. Remote Sensing, 1989, Vol. 10 (4), pp. 751–761.
  40. Ramsey M., Dehn J., Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER into near real-time monitoring using AVHRR, Journal of Volcanology and Geothermal research, 2004, Vol. 135, pp. 127–146.
  41. Ramsey M.S., Harris A.J.L., Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade, Journal of Volcanology and Geothermal research, 2013, Vol. 249, pp. 217–233.
  42. Ramsey M.S., Wessels R.L., Anderson S.W., Surface textures and dynamics of the 2005 lava dome at Shiveluch Volcano, Kamchatka, Geol. Soc. Amer. Bull., 2012, doi:10.1130/B30580.1.
  43. Schneider D.J., Dean K.G., Dehn J., Miller T.P., Kirianov V.Yu., Monitoring and Analyses of Volcanic Activity Using Remote Sensing Data at the Alaska Volcano Observatory: Case Study for Kamchatka, Russia, December 1997, Remote Sensing of Active Volcanism. Geophysical Monograph, 2000, Vol. 116, pp. 65–85.
  44. Schneider D.J., Rose W.I., Observations of the 1989–1990 Redoubt volcano eruption clouds using AVHRR satellite imagery, US Geological Survey Bull., 1994, Vol. 2047, pp. 405–418.
  45. Watson I.M., Realmuto V.J., Rose W.I., Prata A.J., Bluth G.J.S., Gu Y., Bader C.E., Yu T., Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging Spectroradiometer, Journal of Volcanology and Geothermal research, 2004, Vol. 135 (1–2), pp. 75–89.
  46. Wen S., Rose W.I., Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5, Journal of Geophysical Research, 1994, Vol. 99 (D3), pp. 5421–5431.
  47. Wright R., H. Garbeil, Davies A.G., Cooling rate of some active lavas determined using an orbital imaging spectrometer, Journal of Geophysical Research (Solid Earth), 2010, Vol. 115, p. B06205, doi:10.1029/2009JB006536.
  48. Wright R., Glaze L., Baloga S.M., Constraints on determining the eruption style and composition of terrestrial lavas from space, Geology, 2011, Vol. 39, pp. 1127–1130.
  49. Wright R., Lucey P., Crites S., Horton K., Wood M., Garbeil H., BBM/EM design of the thermal hyperspectral imager: An instrument for remote sensing of earth’s surface, atmosphere and ocean, from a microsatellite platform, Acta Astronautica, 2013, Vol. 87, pp. 182–192, Doi:10.1016/j.actaastro.2013.01.00.
  50. Yu T., Rose W.I., Prata A.J., Atmospheric correction for satellite-based volcanic ash mapping and retrievals using “split window” IR data from GOES and AVHRR, Journal of Geophysical Research, 2002, Vol. 107 (D16), DOI: 10.1029/2001JD000706.